Documente online.
Username / Parola inexistente
  Zona de administrare documente. Fisierele tale  
Am uitat parola x Creaza cont nou
  Home Exploreaza
Upload





loading...
















































Revista de Economie si Administratie Sanitara

diverse




ASOCIAŢIA MEDICALĂ ROMÂNĂ

SOCIETATEA ROMÂNĂ DE ECONOMIE

sI ADMINISTRAŢIE SANITARĂ

Prof dr. Al. Popescu”

BIOINGINERIE sI INGINERIE MEDICALĂ

Revista de Economie

si

Administratie Sanitara

ü      Studii si cercetari stiintifice

ü      Documentar legislativ

ü      Actualitati, opinii, comentarii

    (Orizonturi românesti)

Vol. 55-56

(1-2/2010)

Editura Mediamira

Cluj-Napoca

Text Box: ASOCIAŢIA MEDICALĂ ROMÂNĂ
SOCIETATEA ROMÂNĂ DE ECONOMIE
sI ADMINISTRAŢIE SANITARĂ
„Prof dr. Al. Popescu”
BIOINGINERIE sI INGINERIE MEDICALĂ






Revista de Economie
si
Administratie Sanitara




ü	Studii si cercetari stiintifice
ü	Documentar legislativ
ü	Actualitati, opinii, comentarii
    (Orizonturi românesti)



Vol. 55-56 
(1-2/2010)




Editura Mediamira
Cluj-Napoca

Oferta

Aparatura medicala: radiologie si imagistica medicala, dozimetrie si protectie radiologica; endoscopie flexibila si chirurgie laparoscopica; explorari functionale(statii si monitoare pentru terapie intensiva, ecografe,electrocardiografe, electroencefalografe, electromiografe, spirometre, tensiometre, glucometre, stetoscoape, otoscoape, Doppler vascular), echipamente de electrofizioterapie, osteodesitometre etc , ♦Aparatura si materiale stomatologice: unituri dentare complet echipate, radiologie dentara (retroalveolara, panoramica, CT dentar),autoclave, lampi de fotopolimerizare etc, materiale de amprenta, compozite,anestezice,brackett ortodontie, etc. ♦Aparatura de chirurgie, anestezie si sterilizare: mese de operatii, lampi scialitice, anestezie si ventilatie artificiala, sterilizatoare de toate tipurile,electrcauter, aspirator chirurgical, etc. ♦Mobilier spitalicesc si de cabinet:paturi de salon si ATI, noptiere,targi, masute instrumente, etc.                       Dispozitive de mers si de protezare:carucioare electrice si manuale, cadre, carje, bastoane, talonete, ♦Materiale sanitare si consumabile: pungi de ileostomie,urostomie, colostomie si de urina, serigi, termometre, irigatoare,colaci sanitari, cantare, bandaje hernie, ciorapi varice, taliometre,manusi chirurgicale si de examinare, sonde, masti, vygonule, truse de perfuzii, hartie medicala pentru ECG, EEG, EMG, spirometrie, geluri, acumulatoare si baterii medicale. ♦Instrumentar: chirurgical, stomatologic, oftalmologic, ORL, etc. ♦Sticlarie si aparatura de laborator. Sisteme de încalțare, de anvelope sterile (botoșei) pentru sali de operații, spitale, cabinete medicale etc. Materiale consumabile pentru aceste sisteme. Fotolii pentru masaj complet, începând cu talpile picioarelor și pâna la coloana cervicala; lampi pentru încalzit terase și spații libere în perioade friguroase de toamna, iarna și primavara; lampi electrice cu LED-uri de 5 și 11 W cu iluminare echivalenta puterilor lampilor cu incandescența de 40 și 60 W.

(Documentar întocmit de Paulina Manea)

Text Box: Oferta
♦Aparatura medicala: radiologie si imagistica medicala, dozimetrie si protectie radiologica; endoscopie flexibila si chirurgie laparoscopica; explorari functionale(statii si monitoare pentru terapie intensiva, ecografe,electrocardiografe, electroencefalografe, electromiografe, spirometre, tensiometre, glucometre, stetoscoape, otoscoape, Doppler vascular), echipamente de electrofizioterapie, osteodesitometre etc , ♦Aparatura si materiale stomatologice: unituri dentare complet echipate, radiologie dentara (retroalveolara, panoramica, CT dentar),autoclave, lampi de fotopolimerizare etc, materiale de amprenta, compozite,anestezice,brackett ortodontie, etc. ♦Aparatura de chirurgie, anestezie si sterilizare: mese de operatii, lampi scialitice, anestezie si ventilatie artificiala, sterilizatoare de toate tipurile,electrcauter, aspirator chirurgical, etc. ♦Mobilier spitalicesc si de cabinet:paturi de salon si ATI, noptiere,targi, masute instrumente, etc.                       ♦ Dispozitive de mers si de protezare:carucioare electrice si manuale, cadre, carje, bastoane, talonete, ♦Materiale sanitare si consumabile: pungi de ileostomie,urostomie, colostomie si de urina, serigi, termometre, irigatoare,colaci sanitari, cantare, bandaje hernie, ciorapi varice, taliometre,manusi chirurgicale si de examinare, sonde, masti, vygonule, truse de perfuzii, hartie medicala pentru ECG, EEG, EMG, spirometrie, geluri, acumulatoare si baterii medicale. ♦Instrumentar: chirurgical, stomatologic, oftalmologic, ORL, etc. ♦Sticlarie si aparatura de laborator. Sisteme de încalțare, de anvelope sterile (botoșei) pentru sali de operații, spitale, cabinete medicale etc. Materiale consumabile pentru aceste sisteme. Fotolii pentru masaj complet, începând cu talpile picioarelor și pâna la coloana cervicala; lampi pentru încalzit terase și spații libere în perioade friguroase de toamna, iarna și primavara; lampi electrice cu LED-uri de 5 și 11 W cu iluminare echivalenta puterilor lampilor cu incandescența de 40 și 60 W.
(Documentar întocmit de Paulina Manea)

Service: TEMCO ofera activitate de service pe tot teritoriul României.

Va rugam sa va adresati

Dispeceratului National: 0264-599431; 0740-106689; fax: 0264-599432

service@temco.ro

Text Box: Service: TEMCO ofera activitate de service pe tot teritoriul României.
Va rugam sa va adresati
Dispeceratului National: 0264-599431; 0740-106689; fax: 0264-599432
service@temco.ro

Reteaua Companiei Române de

Tehnica Electronica Medicala

Servicii pentru România

Text Box: Reteaua Companiei Române de
Tehnica Electronica Medicala
Servicii pentru România

Sediu national:      Cluj-Napoca   400489 Cluj-Napoca, Str. Republicii nr. 65-67

                                                                                tel: 0264-599331; 0745-115989; fax: 0264-596270

                                                                                        www.temco.ro; office@temco.ro

Birouri:      Bucuresti                                Iasi

                          021353 Bucuresti, Str. Calusei nr. 69A                     700536 Iasi, sos. Pacurari nr. 5/3            

                                tel: 021-2524650; 0745-594854; fax: 021-2524667               tel: 0232-213107; 0744-552454

                                www.temco.ro; office@temco.ro                                                www.temco.ro; cstupu@temco.ro

                   Timisoara                               Târgu Mures

                                300392 Timisoara, Calea Bogdanestilor nr. 28         540311 Târgu Mures, Aleea Carpati nr 45

                                tel: 0256-227360; 0745-636496                                             tel: 0265-218422; 0744-694224

                                www.temco.ro, boaritheo@yahoo.com                     www.temco.ro, office@temco.ro

Magazine:     Cluj-Napoca                        Alexandria

                                      400014 Cluj-Napoca, Str. Samuil Micu nr. 1A    140079 Str. Dunarii nr. 220/50

                                      tel: 0264-591222                                                               tel: 0247-316028, 0744-613878

                                      www.temco.ro, fpop@temco.ro                         www.temco.ro, temco_optica@yahoo.com

Constanta                             Craiova                     Galati

900683 Str. Sarmizegetusa nr 34ª                                            200624 Craiova, Str. Tabaci nr. 1                   800621 B-dul Otelarilor nr. 45/1

tel: 0241-521191, 0740-214292                                            tel: 0251-531531, 0745-368531              tel: 0236-470615, 0744-744161

gnovac@temco.ro, gabrielanovac@yahoo.com          Policlinica Judeteana                                    rionescu@temco.ro

Text Box:  




Sediu national:	Cluj-Napoca	400489 Cluj-Napoca, Str. Republicii nr. 65-67
					tel: 0264-599331; 0745-115989; fax: 0264-596270
					        www.temco.ro; office@temco.ro

Birouri:	Bucuresti				Iasi 

		021353 Bucuresti, Str. Calusei nr. 69A		700536 Iasi, sos. Pacurari nr. 5/3	
		tel: 021-2524650; 0745-594854; fax: 021-2524667	tel: 0232-213107; 0744-552454
		www.temco.ro; office@temco.ro		                  www.temco.ro; cstupu@temco.ro

		Timisoara				Târgu Mures 

		300392 Timisoara, Calea Bogdanestilor nr. 28	540311 Târgu Mures, Aleea Carpati nr 45
		tel: 0256-227360; 0745-636496			tel: 0265-218422; 0744-694224
		www.temco.ro, boaritheo@yahoo.com		www.temco.ro, office@temco.ro 

Magazine:	   Cluj-Napoca			Alexandria

		      400014 Cluj-Napoca, Str. Samuil Micu nr. 1A	140079 Str. Dunarii nr. 220/50
		      tel: 0264-591222				tel: 0247-316028, 0744-613878
		      www.temco.ro, fpop@temco.ro		www.temco.ro, temco_optica@yahoo.com

Constanta		                 Craiova  		   Galati

900683 Str. Sarmizegetusa nr 34ª	                               200624 Craiova, Str. Tabaci nr. 1	      800621 B-dul Otelarilor nr. 45/1
tel: 0241-521191, 0740-214292	                               tel: 0251-531531, 0745-368531              tel: 0236-470615, 0744-744161
gnovac@temco.ro, gabrielanovac@yahoo.com          Policlinica Judeteana		      rionescu@temco.ro

În atentia colaboratorilor!

Adresa noastra de corespondenta:

400489 Cluj-Napoca, Str. Republicii nr. 65-67

Tel.: 0264-599331; Fax: 0264-596270

Persoane de contact:

Andreea Catana (0740-117229), Pompiliu Manea (0744-559098), Gheorghe schiopu (0264-599331), 

Email: acatana@temco.ro; pmanea@temco.ro                           gschiopu@temco.ro;                    

           

Text Box: În atentia colaboratorilor!

Adresa noastra de corespondenta:

400489 Cluj-Napoca, Str. Republicii nr. 65-67
Tel.: 0264-599331; Fax: 0264-596270
Persoane de contact:
Andreea Catana (0740-117229), Pompiliu Manea (0744-559098), Gheorghe schiopu (0264-599331),  
Email: acatana@temco.ro; pmanea@temco.ro                           gschiopu@temco.ro;

Nr. 55-56 (1-2/2010)

REDACŢIA sI ADMINISTRAŢIA

400489 Cluj-Napoca,

Str. Republicii nr. 65-67

Tel: 0264-599331; 0744-115989

Fax: 0264- 596270

E-mail: office@temco.ro

              www.temco.ro

Revista de Economie si Administratie Sanitara

 

___________________

____________________________________________________________________________________________

___________________________________________________________________________________________

Dragi prieteni, LA MULŢI ANI 2010!

Colectivul redactional, aflat la o întâlnire cu dumneavoastra, va roaga sa primiti bunele noastre ganduri si va invita la o colaborare rodnica cu revista noastra.

         Director editorial,

Prof. Dr. Ing. Pompiliu Manea

Membru de Onoare al Academiei de Stiinte Medicale

Colaboreaza:

Luminita Plesca-Manea, Radu Munteanu, Mircea V. Nanulescu, Pompiliu Manea, Radu Ciupa, Ioan Pruncu, Bogdan Manea, Dan Bucur, Dan Rafiroiu, Octavian Olariu, Paula Manea, Constantin Mustata, Gheorghe schiopu,  Ioan Ursu, Mariana Muresan, Emese Boros, Cornel Valean, Alexandru Stanescu, Ioana serban, Daniela Iacob, Radu Morar, Dana Pusta, D. Moldovan, I. Pasca, Laura Cretu, Mihai Handrea, Cristian Colceriu, Elena Gligor, Andrei Costin, Teofil Mija, Ionut Popa, Gheorghe Telea, Constantin Bogdan, Ioan Barbu, Alex Cetateanu si  George Filip-Canada, Calin Caluseru si George Diaconu-USA, Horst Wedt-Germania, Wim Mulder-Olanda, Vladimir Saplacan-Franta, Rolandas Minevicius, Tauras Mekas, Zenona Simaitiene, Asta Lygnugariene, Angele Rudzinskaite (Lituania), Ramunas Kondratas, Eva Crisan, Cristiana Ciortea, Alexandru Tataru, Cristian Bârsu, Adrian Pluscal, Ioan Ilea

Colegiul Redactional

Prof. dr. ing. Pompiliu Manea (director),

Dr. Constantin Bogdan (redactor-sef adjunct),

Prof. dr. Luminita Plesca-Manea (secretar stiintific), Mirela Bucur (secretar de redactie), Andreea Catana, George Bina, Octavian Olariu,  Alina Vanea, Nicu Mihaescu, Adrian Zah, Tibor Poraczky, Adrian Tolan, Mircea Puia

 

●Editor:TEMCO – Tehno Electro Medical Company Cluj-Napoca

Responsabilitatea stiintifica si juridica a materialelor publicate apartine autorilor

● Revista apare trimestrial prin grija editoriala si financiara a Companiei Române de Tehnica Electronica Medicala –                 

● Colaboratorii sunt rugati sa transmita redactiei materialele în format electronic, redactate conform normelor internationale si ale Academiei Române. Utilizarea diacriticelor este obligatorie.

● Editie coordonata de prof. dr. ing. Pompiliu Manea si ing. Bogdan Manea

 

  Lector: dipl.ing. Gheorghe schiopu

  Culegere si redactare: Andreea Catana

  Tehnoredactare:Gheorghe schiopu

  Coperta: dipl.ing.Virgil Dinu

  Editura Mediamira

    director: prof.dr.ing.Radu Munteanu

  Tipografia : “Semne”

     Director gen. : dipl. ing. stefan Dulu

  Bucuresti, str. Barbu Delavrancea, nr. 24,

  sector 1,  Tel:  0744-357018

 

ISSN 1220 - 5796

 

Text Box: Nr. 55-56 (1-2/2010)

REDACŢIA sI ADMINISTRAŢIA
400489 Cluj-Napoca,
Str. Republicii nr. 65-67
Tel: 0264-599331; 0744-115989
Fax: 0264- 596270
E-mail: office@temco.ro
              www.temco.ro
	Revista de Economie si Administratie Sanitara

	___________________




____________________________________________________________________________________________




___________________________________________________________________________________________






Dragi prieteni, LA MULŢI ANI 2010!

Colectivul redactional, aflat la o întâlnire cu dumneavoastra, va roaga sa primiti bunele noastre ganduri si va invita la o colaborare rodnica cu revista noastra.

         Director editorial,
Prof. Dr. Ing. Pompiliu Manea
Membru de Onoare al Academiei de Stiinte Medicale



Colaboreaza:

Luminita Plesca-Manea, Radu Munteanu, Mircea V. Nanulescu, Pompiliu Manea, Radu Ciupa, Ioan Pruncu, Bogdan Manea, Dan Bucur, Dan Rafiroiu, Octavian Olariu, Paula Manea, Constantin Mustata, Gheorghe schiopu,  Ioan Ursu, Mariana Muresan, Emese Boros, Cornel Valean, Alexandru Stanescu, Ioana serban, Daniela Iacob, Radu Morar, Dana Pusta, D. Moldovan, I. Pasca, Laura Cretu, Mihai Handrea, Cristian Colceriu, Elena Gligor, Andrei Costin, Teofil Mija, Ionut Popa, Gheorghe Telea, Constantin Bogdan, Ioan Barbu, Alex Cetateanu si  George Filip-Canada, Calin Caluseru si George Diaconu-USA, Horst Wedt-Germania, Wim Mulder-Olanda, Vladimir Saplacan-Franta, Rolandas Minevicius, Tauras Mekas, Zenona Simaitiene, Asta Lygnugariene, Angele Rudzinskaite (Lituania), Ramunas Kondratas, Eva Crisan, Cristiana Ciortea, Alexandru Tataru, Cristian Bârsu, Adrian Pluscal, Ioan Ilea


Colegiul Redactional

Prof. dr. ing. Pompiliu Manea (director),
Dr. Constantin Bogdan (redactor-sef adjunct),
Prof. dr. Luminita Plesca-Manea (secretar stiintific), Mirela Bucur (secretar de redactie), Andreea Catana, George Bina, Octavian Olariu,  Alina Vanea, Nicu Mihaescu, Adrian Zah, Tibor Poraczky, Adrian Tolan, Mircea Puia
	
●Editor:TEMCO – Tehno Electro Medical Company Cluj-Napoca
●Responsabilitatea stiintifica si juridica a materialelor publicate apartine autorilor
● Revista apare trimestrial prin grija editoriala si financiara a Companiei Române de Tehnica Electronica Medicala –                 
● Colaboratorii sunt rugati sa transmita redactiei materialele în format electronic, redactate conform normelor internationale si ale Academiei Române. Utilizarea diacriticelor este obligatorie.
● Editie coordonata de prof. dr. ing. Pompiliu Manea si ing. Bogdan Manea
	

■  Lector: dipl.ing. Gheorghe schiopu
■  Culegere si redactare: Andreea Catana
■  Tehnoredactare:Gheorghe schiopu
■  Coperta: dipl.ing.Virgil Dinu
■  Editura Mediamira 
    director: prof.dr.ing.Radu Munteanu
■  Tipografia : “Semne” 
     Director gen. : dipl. ing. stefan Dulu
  Bucuresti, str. Barbu Delavrancea, nr. 24, 
  sector 1,  Tel:  0744-357018


	
ISSN 1220 - 5796

L-AM PIERDUT PE MIHAI HANDREA

ing. Gh. schiopu

Matematicianul Mihai Handrea s-a nascut la 10.01.1947, în orasul Reghin, din judetul Mures.

Copilaria si-a petrecut-o în localitatea natala, dar si în satele Morareni si Maioresti locul de obîrsie al parintilor sai: Ioana-contabil sef al Spitalului din Reghin si Iustin Handrea-învatator emerit, un mare român, cu contributii notabile la dezvoltarea românismului din Transilvania, descendent din neamul Maiorestilor, cel care împreuna cu marele sociolog Dimitrie Gusti, au contribuit esential la realizarea Muzeului Satului din Bucuresti.

Iustin Handrea a fost membru al Casinei Meseriasilor din Reghin, el a înfiintat Muzeul de stiinte Naturale (Pasari împaiate) din Morareni, unde s-a petrecut urmatorul episod: cînd Nicolae Iorga, primul ministru al României, a trecut prin Morareni, tinerii satului, împreuna cu învatatorul lor, Iustin Handrea, au întins un cordon în sosea, obligîndu-l sa opreasca masina pentru a-i arata muzeul. Iorga a oprit masina, a vizitat muzeul, a fost încîntat si a elogiat realizarea, iar faptul a ramas înscris în istorie.

Atît Reghinul, aflat la confluenta Muresului cu Gurghiul, cît si cele doua sate (Morareni si Maioresti) situate pe cursul superior al Muresului, cel mai frumos si mai cîntat rîu, al României, apartin unei zone cu relief extrem de diferit, cu oameni harnici, gospodari, vrednici si hotarîti în actiunile lor.

Copilul Mihai a admirat, cu siguranta, frmusetea peisajului, începînd de la cursul linistiit al Muresului pîna-n vîrful muntelui „Scaunul Domnului” ce se ridica falnic deasupra localitatii Deda, locul unde a poposit în 1866 Mihai Eminescu, în drum spre Blaj, gazduit de taranul Iovu Ceontea, intrat si el în nemurire datorita acestei ospitalitati, locul de obîrsie al marelui istoric Vasile Netea, apoi satul Pietris, unde a vazut lumina zilei Pavel Tornea, oboistul si dr Eugen Nicoara, iar mai jos Morareni cu vestitul taraf al lui Victor Radu, nume cunoscute în toata România.

Frumusetea acestei zone l-a atras si pe Ion Vlasiu sculptor, pictor si scriitor, care în ultima parte a vietii s-a stabilit la Bistra Muresului (fosta Deda Bistra). Toate acestea, inclusiv graiul si portul locuitorilor zonei au exercitat, fara îndoiala, o influenta extrem de importanta, asupra copilului, a carui curiozitate excesiva prevestea pasiunea de mai tîrziu cu care si-a dus la bun sfîrsit actiunile pe care le-a întreprins.

scoala primara si liceul le-a urmat la Reghin unde umbra lui Petru Maior, protopopul Reghinului si faima lui Augustin Maior, autorul telefoniei multiple, erau înca suficient de vii, pentru a aprinde imaginatia tînarului studios. Ecourile unei vieti discrete, ordonate si temeinice ale sasilor care au trait în oras, la care se adauga sprijinul si exemplul parintilor, care l-au stimulat la studiu aprofundat si la cunoasterea lumii înconjuratoare, au transformat copilul de altadata în adolescentul, în tînarul pasionat de cea mai exacta stiinta: matematica-informatica.

Prof. Pompiliu Manea îsi aminteste, cu emotie, ca în 1958, exmatriculat din scoala Normala de la Cîmpulung Muscel, ajuns tehnician de radiologie la Spitalul din Reghin, a meditat la matematica, pe copiii contabilei sef-Mihai Handrea si al directorului Spitalului-Sorin Puia, care terminau gimnaziul si treceau în cursul superior al liceului. Ambii, elevi premianti si la fel de buni. Rezultatul a fost ca Mihai Handrea a iesit un mare matematician, iar celalalt, Sorin Puia, la fel de mare, dar ca medic ginecolog

Cu bagajul de cunostinte acumulat în liceu se înscrie la concursul de admitere  la Facultatea de Matematica a Universitatii Babes-Bolyai din Cluj, pe care-l trece cu bine, iar în anul 1969, încheie cu rezulltate foarte bune studiile universitare, primind repartitie în Cluj,  la Institutul de Tehnica de Calcul, avîndu-l conducator pe prof.dr.Marius Hanganut. Aici desfasoara o activitate fructuoasa, în domeniul cu cele mai mari exigente profesionale, cel al sistemelor tehnice de calcul automat al datelor.

Tot în anul 1969 se casatoteste cu studenta de la Conservatorul din Cluj-Napoca: Mariana Rodica Ioja, violonista. Din familia astfel închegata, au rezultat doua fete: Mihaela si Ioana, familie ce se bucura din plin de viata, de copii, de succesele lor, de perspectiva minunata ce li se deschidea.

În anul 2004, Mihai este supus unei încercari de viata imens de dure. La 01.04.2004, dupa o grea si atroce suferinta, îsi pierde sotia, dupa peste 30 de ani de viata comuna.

si-a recapatat cu greu echilibrul. Mai întîi cu cele doua fete ale sale: Ioana si Mihaela, apoi cu cei doi nepotei: Diana-Maria si Tudor-Mihai, zamisliti de perechea Ioana si Marian (ginerele sau), pe care i-a supravegheat cu îngaduinta proverbiala de bunic, cu bunatate, cu întelegere si cu dragoste nemarginita. Asupra lor si-a varsta întregul supraplin sufletesc, prin sentimente de iubire reciproca.

În activitatea profesionala la Institutul de Tehnica de Calcul din Cluj, la Grupul scolar Sanitar Cluj, clasele de tehnicieni de aparatura medicala, unde a predat ca profesor sau dupa mesele cînd facea meditatie cu elevii, ce aspirau la inginerie, a dovedit o veritabila vocatie de pedagog, confirmata de procentajul maxim de reusite la examene ale acestora. Dintre salariatii SC TEMCO SRL care i-au fost elevi sau pe care i-a meditat la matematica amintim: ing.Bogdan Manea, ing. stefan Radoi, ec.Mirela Manea-Bucur si multi altii, cu totii îi poarta o vie recunostinta..

În tot ce întreprindea manifesta o devotiune extraordinara, Era extrem de meticulos, foarte analitic în aplicatiile de calcul automat, dispus la travaliu nelimitat, în conditii de acuratete maxima si de o rigurozitate absoluta, care vizau efectele cele mai complexe, mai complete si mai eficiente ale acestora.

Cu cîtiva ani în urma, cînd reglementarile, în vigoare, obligau furnizorul de dispozitive medicale sa tina evidenta celor furnizate clientilor si a activitatii de service, am purtat cu el o discutie pentru realizarea unei astfel de evidente, numai pentru firmele asociate SC TEMCO SRL Cluj-Napoca (SC Medical Leasing SRL si SC Medical Tehnology&Service SRL) pe care a înteles-o foarte repede, a extins-o imediat la nivelul Ministerului Sanatatii, cu o usurinta uimitoare.

El a creat pentru prima data în România un program pe calculator pentru evidenta activitatii medicului de familie si a Casei de Asigurari de Sanatate.

În ultima perioada efectua serviciul de redactare al „Revistei de Economie si Administratie Sanitara”, editata de Asociatia Medicala Româna-Societatea Româna de Economie si Administratie Sanitara (SREAS), sustinuta material, integral, de catre SC TEMCO SRL Cluj-Napoca.

Grija, competenta, acuratetea si pasiunea cu care efectua lucrarile de redactare impresionau pur si simplu.

Mai presus de orice era un altruist, receptiv la orice solicitare, avea rabdarea si empatia necesara ca sa-si asculte interlocutorii, într-o lume în care, nimeni nu mai asculta pe nimeni, o lume în care dialogul a disparut cu desavîrsire, monologul infatuat si agresiv tine locul discutiilor civilizate si atente.

Îmi staruie în memorie vizita pe care am efectuat-o, împreuna cu prof.dr.ing. Pompiliu Manea, la Spitalul de oncologie-Sectia de hematologie. Nu mai putea mînca, nici bea (de o saptamîna nu mai mîncase nimic), era slabit. În salon mai erau doi pacienti în situatii critice, toti fiind bolnavi de leucemie.

Fructele si ce i-a mai adus prof. Pompiliu Manea, au ramas la el, fara certitudinea ca le va putea consuma vreodata, dar n-a pregetat sa ne povesteasca, cu mult patos, despre înfatisarea urmatorului numar al revistei pe care se pregatea sa-l redacteze: mai frumoos, mai placut, mai atragator.

Am plecat complet ravasiti, din salon, uimiti de vitalitatea discursului sau în contrast cu starea unui tînar de 25 de ani din Deva, care nu se poate descrie în cuvinte.

Nu peste mult timp, cu prilejul unei convorbiri telefonice (din 10.09.2009), cu Pompiliu Manea, mi-a spus, cu  vocea tremurînda, ca se duce la înmormîntarea prietenului nostru comun, Mihai Handrea, pe care-l vizitasem recent la spital.

 S-a stins din viata la 08.09.2009, la numai 62 de ani si opt luni, cînd, daca timpul ar fi avut rabdare, ar mai fi avut multe de spus si de facut.

Conducerea SC TEMCO SRL Cluj-Napoca, salariatii sai, colegii si prietenii, precum si toti cei care l-au cunoscut, exprima condoleante famliei, urmasilor sai, întreaga compasiune fata de ireparabila pierdere, precum si regretul profund al disparitiei unui colaborator fidel si devotat activitatii noastre.

Dumnezeu sa-l odihneasca în pace!

Cluj-Napoca, 12 feb. 2010

Biserica Sf.Ilie-Pipera

Monument Istoric

Cap. I

            Studii si cercetari stiintifice

Coordonatori stiintifici:

Prof.dr. Luminita Plesca-Manea

Prof.dr.ing. Pompiliu Manea

Welcome Speech

Prof.ing.dr. Pompiliu Manea

My dear friends, I wish to welcome you to Cluj Napoca, the beautiful city located near the river Somesul Mic and capital city of Transylvania, protected by the surrounding hills.

First of all, I wish to present in a few words the life and history of the “Medical Equipment Collection”, a history that goes back more than half a century, when as a young engineer I was part of the Romanian Committee for Downgrading and Classification of Medical Equipment and Medical Instruments.

This event occurred during communism, when after the closing of the documentation proving destruction and before the handing in of the destroyed material to the “scrap iron collecting” locations, a group of young workers equipped with heavy hammers with long handles, started smashing and destroying everything, including the smallest parts, for the purpose of preventing that something remained to the much beloved working class of the communist party.

At that moment I realized that we were doing nothing else but values connected to other values, that is the men and specialists who had used these instruments for establishing the diagnosis, for treating the disease and for medical research purposes. I suddenly realized that these devices and instruments were connected to the pioneers of the Romanian medicine, who have lived in our country and to their heirs, like the professors: Ioan Piuariu-Molnar, Nicolae Kretulescu, Carol Davila, Constantin Severeanu, Iuliu Hatieganu, Dimitrie Michail, Dimitrie Negru, Coriolan Tataru, Ioan Goia, Victor Papilian, Nicolae Hortolomei, Ioan Pacurariu, Sorin Schiau, Gheorghe Chisleag, Gheorghe Smitzer, Ioan Barzu, Octav Costachel, Dumitru Dabija, Petre Vancea, Dumitru Radulescu and many others from all over the country, and from abroad.

This destructive activity went on for years, as it happened in case of all values during communism, until 1970, when I met in Cluj Hadrian Daicoviciu, PhD, at that time general manager at the History Museum, who after finding the solution to this problem empowered me by means of the Decision No. 114 of February 1979 to make all these goods part of the “Romanian National Heritage”. Of course, in this respect I was provided with all the necessary legal information as well. I started visiting hospitals all over Romania and during this journey undertaken for the medical equipment service, I managed to register all the medical devices deemed as being part of the Romanian National Heritage. Of course these devices were registered long before destruction; therefore I managed to save a lot of equipment of this type.

During my journey I met people who understood the importance of these values, at first at my working place, then within the medical personnel working in various hospitals, people who greeted me and invited me to search in the attics, basements and in the deposits for obsolete equipment or anywhere else where we could find anything worth saving and could be saved.

Before 1989 I was not aware of the fact, that in other countries, especially in the non-communist ones, there were drugstores passed from fathers to sons. Within these drugstores each instrument and each apparatus was a memory, a vivid one identified with the ancestors and therefore carefully kept at a safe place, for the purpose of preventing its destruction and depreciation.  When generations collected these memories passed from fathers to sons, naturally a place was found where these collections of professional use of bigger or smaller size could be kept.

However, in my case many years of detailed and hard work had to pass until we managed to find the legal way for obtaining all the approvals and the money needed for creating a collection of medical equipment, a collection unique in Romania even today. During these years I had many presentations and I organized many temporary exhibitions, such as the following ones, mentioned in order: June 1979 - Casa Radio (House of Romanian Radio) in Cluj-Napoca; 1982 and 1985 - The House of Culture for Students; 1986-1988 – at the Headquarters of the Ambulance Service in Cluj; 1989 – at the Medical Unit in Gilau, soon after 1990 – at the Romanian National Museum of Transylvania, in the room previously called „Omagiu adus alesului iubit al poporului, Nicolae Ceausescu” (Homage to the beloved chosen leader of the people Nicolae Ceausescu), two years later all the collection was evacuated on stairs and corridors, until seven years before, when the former Mayor of Cluj, Gheorghe Funar, PhD, provided us with an almost 80 sqm, in the “Hintz House”, a historical monument, today the headquarters of the “Valeriu Bologa” Pharmaceutical Collection hosted by the former ‘Hintz’ drugstore. Furthermore we were provided with the money necessary for decorating and painting the building. Afterwards we stared transferring the medical equipment to this place, at the beginning for depositing purposes, later we started designing the necessary furniture, thereby complying with the instructions received from my friend Willem Mulder, Administrator of the University Museum in Utrecht, Holland. The money needed for designing the furniture was provided by the TEMCO Company. I wish to highlight the fact that in 1998 the collection was presented at the Congress held in Leeds, UK, and classified as universal heritage.

Finally, today we are honored being surrounded by our colleagues and friends coming from Europe, the USA and Russia, and participating at the 9th Workshop of the E.A.M.H.M.S. for the purpose of convincing Romania to accept this collection.

Today, I would like to thank the guests and friends who have joined us from the various corners of the world and have traveled thousands of miles just to be here and I wish to believe that they have joined us out of respect for me and my country, Romania. When I say this, I think of Ramunas Kondratas who came from Washington D.C., the capital city of the United States of America, and who is the former manager of the Smithsonian Institute, or of Inger Wikstrom Haugen, manager of the Medical Science Museum in Goteborg, Sweden, or of Anna Radzyun, administrator of the Museum for Anthropology and Ethnography ‘Peter the Great’ – Kunstkamera, who joined us from the cultural capital of Russia, St. Petersburg, city of Pervii Petru. Maie Toomsalu, manager of the Museum for Medical Sciences of the University in Tartu, came from Estonia, and Tauras Mekas, manager of the Museum for Medical and Pharmaceutical History located in Kaunas, former capital of Lithuania. He joined us together with his collaborators Asta Lygnugariene, Angele Rudzinskaite, Vilija Zabarskiene, and Rolandas Minevicius.

Last but not least, I wish to mention Willem Mulder, administrator of the University Museum in Utrecht, president to honor of the event organized today. He has advised and helped us during the organizing of this collection and who after two days of traveling arrived in Romania from Holland, with three days before the opening of the Workshop to see whether everything was all right, although I am sure that there is still much to be done.

Moreover, I wish to mention the fact that he joined us together with his wife, Tiny Mulder, and I am happy to welcome his friends Marie-Jose and Jan Hoekstra and his collaborators Sanne Witter and Ellen Zijp as well, who will be spending eleven days in Romania for the purpose of getting to know us better. 

I also welcome Alexandru Herlea, former secretary of the Romanian Ministry for European Integration in the Romanian Government within 1996-2000 and teacher of technology and science history at the Technical University Belfort-Montbeliard, who today conducts a PhD program having as topic the evolution of medical engineering in Romania, 1859-2009.

I wish to say thank you to all our friends who honor us today with their presence, experience and scientific knowledge gathered in the field of medical sciences from all over the world.

Furthermore, I wish to thank the Romanian participants as well, who will share their presentations with us. Such Romanian participants are: Dr. Eva Crisan, Alexandru Tataru PhD, Dan Rafiroiu PhD, Simona Ţalu PhD, Cristian Barsu PhD and the young participants in the PhD program: Mircea Puia and Dr. Adrian Zah. Furthermore, I wish to say thank you to everybody who helped in organizing this workshop, as did Roxana Ghindeanu - the workshop secretary, George Bina, Octavian, Olariu, Ovidiu Chilat. I also wish to thank to Mr. Tudor Salagean from the Romanian National Museum of History of Transylvania, to the head of the Department for History Dorin Alicu PhD, head of the Restoration Laboratory and to his colleagues Radu Cordos, Sabin Grabini and Ligia Mihaiu and to  Radu Crisan PhD, scientific researcher.

We further wish to thank the Ethnographic Museum of Transylvania, lead by Mrs. Simona Munteanu, who has provided us with this location so that we can be here today in the “Reduta Room” in which our forefathers Vasile Lucaciu, Ioan Ratiu, Ilie Macelaru, Gheorghe Pop de Basesti, Iuliu Coroianu and many others were sentenced to long years of prison by the Austrian-Hungarian Authorities because of having signed the “Memorandum of 1894”, thereby asking rights and freedom for the Romanians living in Transylvania.

Nevertheless, I wish to thank everybody present here today, friends and collaborators, participating at the opening ceremony and I invite you to join us at the welcoming cocktail.

PROSCAN 35 CR-SystemPROSCAN este un sistem ce utilizeaza placi fosforice, pentru achizitie de imagini Rx. Sistemul transforma imaginea radiologica, din analog in  digital.

cid:image001.jpg@01C9974C.FEBEB6F0 

 Distribuitor autorizat:

 

 

  

  Line manager: Radu Nicolau

Mobil:  0744.301.754

A few words from Mr. Willem J. Mulder, general curator and conductor of the workshop from the European Association of Museums of Medical Historical Sciences

Mr Prefect of Cluj Prof. Stamatian. Mr. president of the Romanian Academy Prof Haiduc, ladies and gentlemen, dear friends, I am proud to be here in Cluj Napoca to say a few words at the occasion of the opening of the 9th workshop.

I like to welcome all delegates from several countries that overcome all struggles to be here. A special word of welcome I want to address to the vice president of the European Association of Museums of Medical Historical Sciences, Mrs Inger Wikstrom.

It is impossible to avoid mentioning the financial crises as a special problem that played a considerable role during the last few months. It is only understandable that several delegates had to cancel their participation, being not able to raise even the travel expenses. Even the Board of the Association initially denied a subsidy for this event, also due to lack of money, at last they did found some and we are grateful for that. Let us hope in the future we will be able to find a more stable solution, financing these meetings.

I like to thank our host, Mrs Prof Simona Munteanu, director of the Ethnographic Museum for her kindness to let us have the opening ceremony in this splendid atmosphere. We want to thank Prof. Pompiliu Manea, the important benefactor and stimulator of this meeting. We also want to thank the TEMCO Company 717g63h for the kind help and hospitality.

I also wish to express many thanks to the Medical Faculty and their staff for giving us an opportunity to meet in the various departments. The Cluj Medical and Pharmacy History Museum for having the opportunity to have a close look at the beautiful collection. I gladly congratulate you for the new additions that have recently been installed. I realize we also owe many thanks to all people behind curtains who did a tremendous job. And last but not the least a warm thanks to Miss Roxana Ghindeanu who did all local the basic work.

Organizing a meeting is always complicated. Two years ago, when we were in Zagreb, I expressed my worries about the continuation. These worries are not gone yet but the enthusiasm of many people gives hope for the future. This time we hope to get to know more on collections around radiology, dermatology and ophthalmology. This is a broad field of the medical history. It is impossible for a general curator to be an expert of all these disciplines, there fore we will always need support out of the disciplined selves, such as Clinical staff. This support cannot be valued enough! I am glad we found the necessary expertise in this meeting and I am also sure we will have a good time in Cluj!



The collection of electro-physiotherapy apparatuses in The Museum of the History of Lithuanian Medicine and Pharmacy

Rolandas Minevičius, Tauras Mekas,

Zenona Šimaitienė,

 Asta Lignugarienė

The Museum of the History of Lithuanian Medicine and Pharmacy

Beginning of electro-physiotherapy in Kaunas:

In 1908 The Red Cross Society hospital was founded in Kaunas. In 1910, when the hospital subsidies of the local government were largely increased the Hydro-electro-therapy Department was established in it. Dr. Isaac Feinberg as well as the merciful nurse. M.Blinova was working in this department. According to the annual society report the nurse obtained special education to work at the Hydro-electro-therapy department abroad.

Red Cross Society Hospital in Kaunas

In 1914 special treatment methods were applied in the Hydro-electro-therapy Department of the Kaunas Red Cross Society hospital: galvanic and sinuous currents, faradisation, common and vibrating massages were also used.

In 1920 in the report of Kaunas State Hospital the use of Quartz lamp (Putnag lamp) for treatment was mentioned. 66 patients were treated; totally they had 702 treatment sessions.

In 1921, 133 patients had 2196 Quartz lamps treatment sessions. Quartz lamps were used as an additional therapy for tuberculosis.

During the interwar period several clinics of Vytautas Magnus University in Kaunas had pantostats, multostats and Quartz lamps. In the interwar period apparatuses of the electro physiotherapy were successfully entering Lithuanian market. In the interwar period representatives of well known firms were operating in Kaunas.

                                  

Apparatusses of electro-physiotherapy in the collection of The Museum of the History of Lithuanian Medicine and Pharmacy

 

                                     

QUARTZ LAMP, SOLUX ORIGINAL, Quartzlampen - Gesellschaft m.b.H.Hanau, Nr.23661

The lamp has an original “Solux” bulb. The shade of the lamp was cleaned from scurf and renewed. The lamp was received from Zigmas Jackevičius. His wife, doctor Jackevičiene, used it as ambulatory lamp in Babtai (little town near Kaunas). The lamp was produced in the 1930s.

                      

QUARTZ LAMP, Künstliche Höhen –Sonne, Original Hanau, Quartzlampen Gesellschaft m.b.H. Hanau, Nr. 65034

The state of the lamp remained, however the bulb itself did not survive. The shade of the lamp was cleaned from scurf and renewed. The lamp is a gift of Rimantas Visockas to the Museum. In 1934 Feliksas Visockas, the teacher from Kupiškis (North Lithuania) bought that lamp to treat his son for tuberculosis. Other family members took the chance to use a Quartz lamp too.

               

PORTABLE QUARTZ LAMP “Dr.Ing.F.Müller“, Quartzlampenfabrik, Essen, Type W4, Nr. 1662

The lamp remained in perfect condition. The original mercury bulb as heating element consisted in it. The lamp was bought from Mrs. I.Tumeniene in 2007. It was used by her father, forester, for his needs near 1931.

PANTOSTAT

In 1997 the Pantostat was received by the Museum from  Kaunas Skin and Venereal Diseases Clinic. In 1922-1940 the Kaunas Skin and Venereal Diseases Clinic was under resourced. The pantostat was the only apparatus in inventory register (with add-ones for endoscopy and ear drumhead massage).

MULTOSTAT, ERDSCLUSSFREI, Nr. 6240

In 1988 multostat was received from relatives of doctor J.Alekna. It was used by doctor J.Alekna (1873 - 1952), an interwar period otholaryngologist. It has 5 handles with inscriptions: Endoscopie, Galvanisat.,Sin.Farad., Kaustik, Motor.

  • Apparatus is in perfect condition.
  • It was used by Brone Štraupaite (1904 -1963), a trained nurse. She worked in Kaunas Red Cross Hospital in 1943.
  • There is no data for what it could be used.
 

  • The state of apparatus is satisfactory.
  • The warranty list was found inside the box: „Garantieschein zum Vio- apparat Nr. 26108“, and dated on 24. 6. 27.
  • It has 5 heads.
  • The apparatuss was bought by Museum from antique shop.
  • There is no data for what it was used.

 
APPARATUS „UCO-STANDARD”

APPARATUS „VIO“, Nr. 26114

“ULTRA SAN 16”, D.R.G.M. (Deutsches Reich Gebrauchsmuster

(German Reich Registered Design)

Nr. 72671

 
 

It was given as a present to the museum by Mr. Petras Deltuva in 2006. The state of the apparatus is satisfactory. The warranty list refers that it was bought in 1927. The cartoon inside the case of apparatus is labeled (In German language): ULTRAFIX, Antiseptische bestrahlungskappen für die Hochfrequenz behandlung D.R.P. ang. D.R.G.M. It has 16 heads.

There is also package with numbered caps for different heads inside the case. According the numbers of the caps particular treatments and diseases are mentioned. For example:Nr.1 – fuer Schönheitspflege, ganz zarte Massage.

              Nr. 2, 3 - für Rheumatismus, Neuralgine, Gicht etc.

              Nr. 4, 5 – Hexenschuss, Ischias.

APPARATUS „ULTRA – SAN 25“, D.R.G.M. (Deutsches Reich Gebrauchsmuster (German Reich Registered Design) Nr.80878

 
  

Apparatus is in perfect condition. It has 25 heads. The apparatus belonged to doctor S. Rotstadt, Polish physician, the refugee from Nazis, when he stayed in Kaunas during the World War II.

  • The state apparatus is satisfactory.
  • It has 5 heads.
  • It was bought by museum from antique shop.
  • There is no further information about it.
 

           “ULTRASTAT 5“

CONCLUSIONS

We have sufficiently documented Quartz lamps, pantostat and multostat.

We are able to document satisfactorily “ULTRA – SAN” apparatuses.

We still need more data about:

„UCO-STANDARD”

„VIO“

“ULTRASTAT 5“

APARATE  DE OPTICA  MEDICALA

MASINA DE GAURIT LENTILE     MASINA  AUTOMATA DE SLEFUIT LENTILE

400489 CLUJ-NAPOCA, Str. Republicii nr. 65-67; Tel.: +40 - (0)264 - 599 331; Fax: +40 - (0)264 - 596 270021353 BUCUREsTI, Str. Calusei nr. 69A, Tel: +40-(0)21 252 4650;

 Line manager:ing.  Adrian Pluscal
www.temco.ro, e-mail
: apluscal@temco.ro;   Mobil :+40-(0)745-106869

 

A short history of dermatology and professors of dermatology

in Cluj – Napoca

(1775 – 1987)

Author: Alexandru Tataru

University of Medicine “I.Hațieganu” Cluj – Napoca, Romania,

Dept. Dermatology

The beginning

1775: Medical and surgical College –Klausenburg (under the patronage of Piarist religious order);

1784: it becomes Academic College preparing surgeons and gynecologists (head of surgery was Ferencz Nyulas); - from 1793 is preparing ophthalmologists too under the supervision of Ioan Molnar-Piuariu (Romanian);

1817: the Academic College becomes Medico-surgical Institute until 1872.

The first University in Klausenburg

1872: is established the “Franz Joseph University” with a Faculty of medicine, the teaching language being the Hungarian and preparing specialists in almost all specialties of that time.

Dermatology: the first professor was Eduard Geber, coming from Vienna, where he studied with Ferdinand Hebra.He was the head of Clinic of dermatology and venereology until 1897.

The second professor – TAMAS MARSCHALKO

Prof.dr. Tamas Marschalko (1862 – 1915) - Head of Clinic of dermatology and venereology between 1897 and 1915. At that time the Clinic had 110 beds – a big one. The main aria of interest of prof. Marschalko was the dermatopathology. One of his assistants was the future professor Coriolan Tataru, the fourth.

The third professor – VERESS FERENCZ

The third professor: Ferencz Veress, between 1915 and 1919 - He was actually born in Bucharest and studied there, which means at that time he belonged to a different country, the former Kingdom of Romania, and was requested to teach in Klausenburg (Cluj), in the old Austro-Hungarian empire because he was Hungarian like nationality (between 1872 – 1919, the official language of teaching in Klausenburg was the Hungarian).

A great historical moment

Transylvania became a part of the Romanian Kingdom after the First World War. After the First World War, the majority of population from Transylvania became Romanian, by a political revolution; this area of the Austro-Hungarian Empire was unified with the Kingdom of Romania.

The old “Franz Joseph University” of Klausenburg became the new “King Ferdinand the First University”, Romanian became the official language and the former Hungarian professors where replaced by Romanian ones. The majority of old Hungarian professors left Romania and they settled in Hungary. At Szeged city, and in Szeged a new faculty of medicine was born. Prof. Veress remained in Romania.

The fourth professor – CORIOLAN TĂTARU

The fourth professor and head of dermatological clinic in Klausenburg (now Cluj) became the almost young junior lecturer of prof. Marschalko, dr. Coriolan Tataru (1889 – 1957), who gradually won the academic titles of senior lecturer in 1920 and full professor in 1923.

Prof. dr. Coriolan Tataru ( short biography ) 1889 - 1957

    1913: graduated the Faculty of Medicine from Clu;j

    1913: assistant of prof. Marschalko at Dermatology Dept. and after some years junior lecturer;

    1920: senior lecturer;

    1920 -1923: stages of dermatological practice in Vienna, Paris and London;

    1923: full professor and head of Dermatological Clinic from Cluj until his death in 1957;

    Main arias of activity: syphilis (in collaboration with prof. Marschalko: studies about the glycogen in the skin and the role of arsenic in the treatment of syphilis) and also professional dermatoses and allergies of the skin;

    Initiator of the collection of wax moulages in different dermatoses , named today “Dermatological Museal Collection prof. Coriolan Tataru”;

    This collection was perhaps the latest realized in Europe, between 1928 – 1936, by dr. Richard Hoffman ( assistant of prof. Tataru ) and moulageur Kinle.

Dr. HOFFMAN (1899 - ?) – Short biography

    Born : probably 1899;

    Graduated the Faculty of Medicine (University “King Ferdinand” from Cluj) in 1923;

    Junior assistant between 1924 – 1935 and senior assistant between 1935 – 1936 at Faculty of Medicine, Department of dermatology and venereology, the head of department being prof.dr.Coriolan Tataru;

    Gifted with great artistic talent (successful painter), he combined the scientific knowledge of dermatoses with his artistic skills and he created between 1924 – 1936 wax moulages of different dermatoses;

    In this work he was pushed up and sustained by prof. Coriolan Tataru and he was helped by moulageur R.Kinle (no other information about the last one);

    During 12 years he created all the pieces from the collection named today “The Museal Collection prof. Coriolan Tataru“;

    In 1936 he left Cluj and moved to the Faculty of Pharmacy from Bucharest, working like senior assistant in the department of Analytic Chemistry ( head prof. dr. Nicolae Deleanu ) for some time and after that he became medical official for a pharmaceutical company in Bucharest;

    We did not find any data about dr. Hoffman after the year 1941;

    We thank for this data about dr. Hofmann’s biography to prof.dr. Samuel Izsak – from the Department of History of Medicine of the University of Medicine from Cluj.

The Clinic of Dermatology and Venerealogy from Cluj

 
                                                        

           

Secondary malignant syphilis                                  Late congenital syphilis (gomma)

(in the present associated with HIV/ AIDS)

                                        

       Madura’s foot (micetoma)                             Genodermatoses Mibelli’s porokeratosis

The moulages with cases of syphilis were presented in Budapest in 1935 with the occasion of the 9th European Congress of Dermato – Venerealogy ant they won the gold medal.

Prof.dr. ALEXANDRU OPRIȘ

          Head of the Clinc and Department of Dermatology and Venerealogy for just one year ( 1957 – 1958 ) after prof.dr. C.Tataru;

          He died suddenly in 1958 at the age of 48;

          Heads of the Clinic and Department were first assistant professor ( conferențiar ) dr.Iuliu Capușan between 1958 – 1962 ; in 1962 the former assistant prof.dr.Petre Țârlea came back in Cluj from Timișoara, like full professor and rule the discipline of Dermatology until 1969; once retired, dr. Iuliu Capușan became full professor and again the head of discipline between 1969 – 1987.

Prof.dr. PETRE ŢÂRLEA (1901 - 1975)

          Born: 1901 (Alba- Iulia);

          Graduated: Faculty of Medicine Cluj in 1925 (prof.C.Tataru retained him as junior assistant at Dermatology);

          Special training courses in Vienna-1928 and Budapest- 1929;

          Senior assistant: 1930;

          Junior lecturer: 1936;

          Senior lecturer (conferențiar): 1949;

          Moved to Timișoara in 1952 like head of Dermatological Clinic; he becomes full professor and dean of the Faculty of Medicine from Timișoara;

          He comes back in Cluj in1962 and rules the Clinic and Department of Dermatology until 1969, when he is retired;

          Congresses: 1935 – Budapest, 1960 – Prague, 1961 – Gdańsk, and in 1965 – again Budapest;

          Published over 200 scientific studies;

          Main arias of activity: professional dermatoses, antisyphilitic treatments, skin tumors, modifications of capillaries in different dermatoses, psoriasis and eczemas.

Prof.dr. IULIU CĂPUȘAN (1918 – 1991)

          Born: 1918 in Cluj;

          Faculty of Medicine in Cluj 1936 – 1940, Sibiu 1940 – 1943 (between 1940 and 1945 the University of Cluj was forced to move in Sibiu because of World War II);

          1943 -1947: medical practice like hygienist;

          Prof. C.Tataru retained him as junior assistant in the Clinic of Dermatology in 1947 and senior assistant from 1949;

          Junior lecturer: 1957;

          Senior lecturer: 1962;

          Professor: 1968;

          Travels for training and documentation: 1957 – U.S.A.; 1966 – Hungary; 1967 – England

          1954: was sent to North Korea as a visiting professor during the war between the two Korean states;

          1967: elected for his prestigious scientific activity member of the Romanian Academy of Medical Sciences (before he became a professor);

          1962 – 1965: Dean of the Faculty of Medicine;

          1965 – 1967: Prorector of the University of Medicine;

          Member in the Advisory Board of “Excerpta Medica”! (edited in Allous diseases - PhD in Dermatitis Duhring-Broq ), after that pemphigus and pemphigoid Lever - mycology: he discovered living yeasts from more than 1500 years in archeological sites (so-called “ archeo - medicine“) - the pathology of connective tissue (lupus erithematosus, scleroderma ) - porphyrias (porphyria cutanea tarda);

          He gave to the dermatology training and practice in Cluj an important orientation: to be integrated with all medical specialties, internal medicine in the first place;

          To asses the relationships between skin diseases and internal diseases was the main goal for prof. I.Capușan.

CONCLUSIONS

          We wanted to honor the memory and the activity of our  professors of dermatology;

          We believe history could also help us understand better how dermatology was developed in our country and to understand better the present in the lights of the past;

          I think the most important legacy of the past is day to day work applied to the recent scientific advances in our practice and continuously developing the relationships between dermatology and all the other medical specialties.

Logo
LANDMARKS IN THE HISTORY OF CLUJ’S MEDICINE

THE HISTORY OF THE FACULTY OF MEDICINE IN CLUJ DURING THE INTERWAR PERIOD

Cristian Bârsu MD

 Ph.D.Assoc. Prof. History of Medicine Dept.

“Iuliu Hatieganu” University of Medicine and PharmacyCluj, Romania

The School of Medicine and Pharmacy in Cluj has an extensive history which must be studied with impartiality and in detail. With this objective, the focus of this presentation covers the history of the Romanian Faculty of Medicine during its first two decades of activity.

The period starts in 1919, when the Faculty of Medicine, part of the Romanian University in Cluj, was created and ends in 1940, when all the faculties of the «King Ferdinand I» University, the local authorities and a large number of the general population were obliged to seek refuge.

A general view of the Clinics (Cluj, 1919)

The Ruling Council officially empowered Onisifor Ghibu – as representative of the Department of Instruction – to take over the «Franz Joseph» University for the Romanian authorities. This occurred on May 12, 1919.

First of all a committee of famous scientists and scholars was formed – known as the «University Commission» – in order to reorganize the University of Cluj and to select the new academic staff. Its chairman was Prof. Sextil Pușcariu. The members of the Medical Section of this Committee were Prof. Gheorghe Marinescu and Prof. Ernest Juvara – from the Faculty of Medicine in Bucharest, Prof. Mihail Manicatide – from the Faculty of Medicine in Jassy, and two physicians from Transylvania – Iuliu Hațieganu, assistant at the Internal (Medical) Clinic in Cluj, and Iuliu Moldovan, General Secretary for health and medical assistance at the Department of Social Affairs of the Ruling Council.

        

The Central Pavilion of the Clinics in Cluj       The Main Building of the Cluj University

                            (1919)                                                                     (1919)

The University Commission (1919)

The Departments and Their First Directors in 1919-1920

1. Anatomy – Victor Papilian (associate professor)

2. Histology & Embriology – Ion Scriban (associate professor at the Cluj Faculty of Science), then Ioan Dragoiu

3. Physiology – Ioan Nitescu (associate professor)

                                         

Victor Papilian                                                 Ioan Nitescu

The Anatomical Pavilion

4. Pathology – Victor Babes (professor at the Bucharest Faculty of Medicine), followed by Titu Vasiliu (associate professor)

5. Experimental Pathology – Constantin Levaditi (professor), then Mihail Botez

6. Hygiene & Social Hygiene – Iuliu Moldovan (professor)

                          

Constantin Levaditi        Victor Babes               Iuliu Moldovan              Titu Vasiliu

7. Internal Clinic – Iuliu Hatieganu (professor)

8. Surgical Clinic – Iacob Iacobovici (professor)

9. Neurological Clinic – Ion Minea (professor)

10. Psychiatric Clinic – Constantin Urechea (professor)

                                                                 

Iuliu Hatieganu                                      Iacob Iacobovici

The Surgical Clinic

                            

                                Constantin Urechea                                Ion Minea

A Pavilion of the Neurological Clinic

11. Gynecology  – Cristea Grigoriu (associate professor)

12. Dermatology and Venerealogy – supplied by Stefan Gh. Nicolau (professor), then Coriolan Tataru (associate professor)

13. Paediatrics – Titu Gane (associate professor)

14. Ophthalmology – Dumitru Michail (associate professor)

                    

                          Titu Gane                         Mihail Botez              Stefan Gh. Nicolau

                    

                   Cristea Grigoriu                 Dumitru Michail                    Coriolan Tataru

15. Pharmacology – without professor, then Gheorghe Martinescu

16. Forensic Medicine – supplied by Nicolae Minovici (associate professor at the Bucharest Faculty of Medicine)

17. Biochemistry - without professor, then Pierre Thomas

18. Dentistry – Gheorghe Bilascu (associate professor)

19. Ortho-rhino-laryngology – Ion Metianu (associate professor), then Ion Predescu-Rion

20. Radiology – Dumitru Negru (associate professor)

                        

Ion Predescu-Rion            Ioan Dragoiu             Gheorghe Bilascu          Dimitrie Negru

The Building of Physiology and Radiology

                           

Emil Racovita                                Nicolae Minovici

In 1920 the Pharmaceutical Institute for teaching students of pharmacy was created in Cluj. It was part of the Faculty of Medicine. The organization of pharmaceutical studies was based on a special regulation, elaborated in 1919, which established two stages of learning. The first part required one year of practice in pharmacy. The next stage consisted of two years of higher education at the Faculty of Science, and a further two years at the Faculty of Medicine. On February 13, 1920 Professor Gh. P. Pamfil was elected director of the Pharmaceutical Institute and in the meantime he became director of the Pharmacy of Clinics.

                   

Alexandru Borza          Gheorghe Pamfil    Gheorghe Martinescu    Stefan Secãreanu

The Neurological Clinic (1920)

To enhance the professional level of students, the Romanian Faculty in Cluj organized summer school courses. In 1920 some great professors taught, including Thoma Ionescu, Dimitrie Gerota, Ernest Juvara, Dumitru Manolescu, Ion Nanu-Muscel, Daniel Danielopolu, Alexandru Obregia, Mihail Manicatide, Gheorghe Marinescu and Nicolae Gh. Leon.

              

   Iacob Iacobovici                  Ioan Goia               Gheorghe Bilascu        Victor Papilian

Even in the financial crisis, some important improvements took place at the Faculty of Medicine in Cluj. In 1930 the Course of medical semiology was transformed into a special department – the first one in Romania. The director was Prof. I. Goia.

In 1931 the Institute of Balneology and Physiotherapy, directed by Associate professor M. Sturza, was created. In 1933 the Section of Urology was separated from the Clinic of Surgery and became the Clinic of Urinary Disease directed by E. Țeposu. In 1938 the infecto-contagious course – part of the first Medical Clinic – became the Infecto-contagious Department with I. Gavrila as its chief. In 1927 the Anti-tubercular Dispensary for students led by L. Daniello was created and in 1929/30 the Anti-venereal Dispensary directed by C. Tataru.

In 1938 the infecto-contagious course – part of the first Medical Clinic – became the Infecto-contagious Department with I. Gavrila as its chief. In 1927 the Anti-tubercular Dispensary for students led by L. Daniello was created and in 1929/30 the Anti-venereal Dispensary directed by C. Tataru.

“Pasteur Institute” in Cluj (1920)

Franco-Romanian co-operation proved very beneficial for the Faculty of Medicine in Cluj. Jules Guiart created the first Romanian Institute for the History of Medicine, in Cluj. Pierre Thomas organized the Institute of Biochemistry of the Faculty of Medicine. René Jeannel – the adjunct of Professor Emil Racovița – at the direction of the Institute of Speology in Cluj – led the courses of Biology for medical students until 1930.

The “Golden Generation” of professors at the Cluj Faculty of Medicine (1919 – 1934)

Iuliu Hatieganu                                       Iacob Iacobovici

Gheorghe Bilascu                                  Ioan Dragoiu

Iuliu Moldovan                                        Victor Papilian

Titu  Vasiliu                                           Nicolae Minovici

Ion Minea                                              Constantin Urechea

Dumitru Michail                                      Jules Guiart

Titu Gane                                              Vitold Baroni

Dimitrie Negru                                        Ion Predescu-Rion

Cristea Grigoriu                                      Ioan Nitescu

Coriolan Tataru                                      Mihail Botez

Gheorghe Pamfil                                    Gheorghe Martinescu

The “Golden Generation” of the Cluj Faculty of Medicine (1922)

The second generation of professors                                       Associate Professors

Marius Sturza                stefan Secareanu                                  Constantin C. Velluda

Vitold  Baroni                 Alexandru Pop                                       Ion Gavrila

Emil Ţeposu                  Gheorghe Popoviciu                               Leon Daniello

Ioan Goia                      Gheorghe Buzoianu                                Rubin Popa

Ioan Aleman                  Ion Manta                                              Traian Popoviciu

Valeriu L. Bologa           Grigore Benetato                                    Cornel Crisan

                         

Valeriu Bologa                 Emil Țeposu                Alexandru Pop              Aurel Moga

                            

   Ion Aleman                  Marius Sturza              Leon Daniello               Ioan Goia

                           

   Rubin Popa               Constantin Velluda             Cornel Crisan           Traian Popovici

Their activities were very complex, including many scientific and didactic achievements of incontestable value. For example, for the first time in Romania the following treatises were published: the treatise of Semiology and Pathology edited by Hatieganu and Goia; the treatise of Anatomy written by Papilian; the treatise of Drugs analyze elaborated by Pamfil and Manta. These books were re-edited many times in the subsequent four decades and became landmarks for all medical faculties in Romania.

Valeriu Lucian Bologa the Founder of Old Medical Books Collection in Cluj

         

n       In 1911 Bologa became student at the Faculty of Science in Leipzig.

n        The next year he moved to Jena, where he continued to study biology. At the same time he became student at the Faculty of Medicine in Jena. In 1914 he graduated in Science.

n       He participated at First World War as military-physician on the Italian front and – later on – in the Romanian Army. In that time he continued medicine in Jena and Innsbruck.

n       After the end of the war, V. Bologa came back to Romania (1919) and continued to study medicine at the Romanian Faculty of Medicine, which was part of the University of Cluj.

n       Professor Iuliu Hatieganu (1885 – 1959) the dean of the Faculty – had the initiative to create the Institute (Chair) of History of Medicine in 1919/1920, the first one in Romania.

Because there was no young Romanian specialist in this field, the Professorial Council invited the French professor of parasitology and history of medicine, Jules Guiart (1870 – 1965), to direct the Institute of History of Medicine.

The idea of inviting Guiart as professor of history of medicine in Cluj belonged to Professor Emil Racovita (1868 - 1947) – the famous biologist and explorer.

At that time Racovita was the director of the Museum of Speology of the Faculty of Sciences in Cluj – the first museum of this type in the world.

 

Emil Racovita recommended to Bologa to join the Institute of History of Medicine. So, Bologa was appointed in 1921 assistant professor at the Institute of History of Medicine.

At that time Guiart could not end his activities at the Faculty of Medicine and Pharmacy of Lyon. He came to Cluj only in 1921. He started the book collection of the Institute of the History of Medicine by giving French books published in the XIX century.

Jules Guiart

In 1923 Valeriu Bologa became Ph. D. and began to collect old medical pharmaceutical publications with historical value. Until 1928 the collection included rare medical books edited in Romania. The most important help was given by the Minister of Health – Professor Ioan Lupas (1880 - 1967). The majority of books belonged to the ophthalmologist and historian of medicine Gheorghe Crainiceanu.

     

Jules Guiart and Valeriu L. Bologa created a special series of medico-historical studies entitled “The Medico-Historical Library” in 1926. Until 1945, when this project was stopped, there were published 14 volumes. The subjects were:

n       the beginning of scientific medicine in Romania

n       the history of medicine in Transylvania

n       rural hygiene in the past of Romania

n       the French medical mission in Romania between 1916 – 1918

n       the help of the Romanian people from Transylvania for the wounded people during 1877 –1878

n        St. Cosma and St. Damian

n        the medicine during the Pharaohs etc.

  • Jules Guiart finished his academic activity in Romania in 1930.
  • The University of Cluj offered him the title of honorific professor.
  • The Romanian Academy elected him correspondent member.
  • The Romanian Academy of Medicine elected him honorary member.
 

In 1930 V. Bologa became the Director of the History of Medicine Institute. In the same year the collection of books had 8000 titles.

During the Second World War – between 1940 and 1945 – the Department and the book collection were moved in Sibiu, where the Faculty was in refuge. In this period Rudolf Spek – the Director of the Brukenthal Library in Sibiu helped Bologa obtain old medical books.

    

During the Second World War – between 1940 and 1945 – the Department and the book collection were moved in Sibiu, where the Faculty was in refuge. In this period Rudolf Spek – the Director of the Brukenthal Library in Sibiu helped Bologa to obtain old medical books. The Faculty returned in Cluj in 1945.

After 1948 different hospitals of Transylvania and also many clinics and departments of the Faculty of Medicine transferred their old medical and pharmaceutical books to the Chair of History of Medicine. The collection was developed by the acquisition of rare books from the second-hand bookshops and also by donations. After two years V. Bologa organized the exhibition History of the Romanian Medicine at the Library of the University in Cluj. He presented old books, reviews, photos and engraves. In 1937 V. Bologa became professor.

Bologa organized the collection in six categories:

          old medical reviews, old reviews of history of medicine and related sciences such as history of pharmacy, of biology, of chemistry and biochemistry, of physics etc.

          old medical books (1525 - 1830)

          “Transilvanica” – works in Romanian, German and Hungarian languages edited in Transylvania

           old Romanian medical books (1793 - 1869)

           books of the most important Greeks and Roman physicians of the Antiquity

          new medical books.

The complex work of organization was realized by Professor Valeriu Bologa, his assistant Samuel Iszak and two librarians Maria Maior and Hortensia Sasca.

It is interesting to give some examples of old books from the Collection of the History of Medicine Institute:

o      Petrus Hispanus (1226 - 1277) – Thesaurus pauperum (1525)

o      Leonhard Fuchs (1501 - 1566) – De medendis singularum humani corporis partium a summon capite ad imos usque pedes passionibus ac febribus Liber Quatour (1539, Basileae)

o      Henricus Cornelius Agrippa (1486 - 1553) – De incertitudine et vanitate  scientiarum (1544, Antwerpen)

o      Johannes Antonides van der Linden (1609 - 1664) – Magni Hippocratis coi Opera Omnia (1665, Leyda)

  • Adam Chenot (1721 - 1789) – Tractatus de Peste (1766, Vindobone)

o      Prudent Hevin (1715 - 1789) – Cours de Pathologie et de Thérapeutique chirurgicales (1785, Paris)

o      Papai Pariz Ferencz (1649 - 1716) – Pax Corporis (1690, Cluj), “Editio princeps”

o      Stefan Vasile Episcopesco (1777 - 1850) – Practica doctorului de casa (The activity of the family’s physician) (1846, Bucuresti)

Bologa retired in 1962, but he continued his scientific activity as consultant professor. He was the editor of the first Romanian textbook of History of Medicine. This book was published in 1963. His most important achievement was to direct the treatise “History of Universal Medicine”, edited in 1970.

In 1972 – the next year after Bologa’s death – was published the complete treatise “History of the Romanian Medicine”, a première in the Romanian scientific literature.


ELECTROTHERAPY DEVICES

1.    Multostat and Pantostat apparatus

Dr. Mircea Puia PhD

Dr. Adrian Zah

The equipment type Multostat and Pantostat is apparatus which uses electric current for therapeutic purposes. Because the first devices were functioning only with batteries, it provided the physicians only the possibilities of galvanization and faradization. Given the fact that the electric current was already wide available, it was also possible to use it for many medical labors.

It is the right place here to mention the electric engine of ¼ HP, with rotary motion used for massage devices, surgery, instrument sharpening and so on.

The Multostat is a multipurpose device without ground protection. It has several fields of uses:

-Galvanization only till 500 mA

-Faradization only

-Galvanization and faradization

-General and orthopedic surgery

-Endoscopy and cauterization

-Vibrating and pneumatic massage

-Instruments sharpening

There is also a Multostat used in neurology which is not equipped with endoscopy and cauterization options, but instead it has a switch with 2 triggers for electric shocks.

The Pulsator is a 1/6 HP electric engine, build to command the hand piece for vibrating massage. It can be used also to put in motion additional devices.

Pantostat, Siemens-Reiniger-Veifa, SN R 121/2645, with electric engine, SN 244513, 220 V/1, 25 A, 93/5 W, ¼ CP, 50 Hz, 3000 spins/min.

It is a device with 5 functions:

- Cauterization

-Endoscopy

-Galvanization

-Faradization

-Vibrating massage

You can set the voltage by linear electric resistors until 12 degrees of amplifications.

It has also a polarity inverter for faradizations and galvanization, a regulator and a miliampermeter, SN 3301940, with three scales of 5, 50 and 500 mA. It is mounted on a 4 wheels trolley for transport reasons. It functioned in the Balneophysiotherapeutic Clinic during prof.dr Marius Sturza and then dr.Eugen Morariu, dr. Auxentin Mihai Muresan and dr. Constantin Craciun , from the Central Clinic Hospital Cluj.

The Variostat Erdschlussfrei made by Koch&Sterzel , Dresden, SN 34205, 220V, 50 Hz and 2A, with electric engine(SN 2521), 220 V, 50 Hz, 1//4 CP and 3000 spins/min.

It is a device with 5 functions:

-Vibrating massage

-Cauterization

-Endoscopy

-Galvanization

-Faradization

The last 4 procedures can be set by resistors from 1 to 10.

The miliampermeter, SN 428330, has three scales of 5, 50 and 500 mA.

On the command panel we find:

-On/off switches

-The electric sources for galvanic and faradic currents

-The regulators for galvanic and faradic currents.

It is mounted on a 4 wheels trolley for transport reasons. Manufactured after 1905 and donated by the Balneophysiotherapeutic Clinic from Cluj.

2. VERA apparatus family

Vera

Those devices are special build to function with AC current and be wisely used where there is no need for an electric engine and a galvanization current no powerful than 50 mA is required. The AC current from the electric network is transformed into DC current, which is set by using a potentiometer to obtain the best result. The device is mounted into a white marble case with 2 handles for transportation. The frontal marble desk contains the main switch, the round-nosed clamps, a selector switch for changing the polarity of the galvanic current, a button for adjusting the treatment current. This one also has the function to interrupt the current, meaning that the operator has to increase the current beginning from 0 value. The upper desk contains a two scale Miliampermeter and the by-pass switch.

Vera-Duplex has the same characteristics as Vera, but also an additional current breaker for the faradic current. The same pair of electrodes is used for both types of current, giving the possibility to use separately or simultaneous galvanic and faradic currents.

Those devices are cheaper than those from the Multistat family, due to the lack of the electric engine.

The construction of the Vera-Universal device is similar to the other two, but at a bigger scale because the main board has on it the buttons and connections for endoscopy and cauterization by galvanic current.

Vera-Universal made by Sanitas, Elektrizitats Gesellschaft ,Berlin, seria 7345; 220 V, 50 Hz, 200 W.

It is a device with 4 functions:

-Cauterization

-Endoscopy

-Galvanization

-Faradization

It has a polarity inverter and a pulse regulator for the waves.It functioned at Clinic nr. 1, Physiotherapy Department, Cluj-Napoca.

Radiostat, SN 13753 used for physiotherapy with high-frequency currents. It features 5 glass electrodes and protection against radio jamming. The device was functioning with high-frequency currents under the appearance of disruptive discharge of sparks, d’Arsonval type.

 


The diathermy equipment with spark gaps

The diathermy equipment is producing high-frequency currents by using spark gaps and oscillation circuit. The high-frequency currents from the human physiology point of view have been studied by the French physicist Arsene d’Arsonval. He noticed that the high-frequency currents have quite different properties in addition of other types of electric currents, meaning that it will not measure any influence to sensitive and motor nerves, but they generate the heating of the tissues. This phenomenon has been named as diathermy.

If the quantity of the generated heat in the tissue is too big, it can produce the tissue’s coagulation thus the procedure is called electric coagulation.

Heirinch Hertz was the one to discover in 1887 the property of an oscillation circuit to generate oscillations into a neighborhood circuit. This is the induction phenomenon, and the pairing of the 2 circuits is called magnetic coupling. The oscillations from the secondary circuit are reaching its maximum when their period is the same as the primary circuit.

The resonance is a phenomenon which occurred when the primary and the secondary circuit have the same capacitance and inductivity, the sum of oscillations leading to the birth to the high-frequency current.

In order to transform and use the high-frequency current for therapeutic purposes, a lot of pieces for transformation, connections and adjustment were required. All those have been compacted in a single box with the goal to have a small and ergonomic equipment.

The diathermy equipment with spark gaps,

 for cutting and cauterization, produced by Siemens-Reiniger-Veifa, SN 051/1145.

The device is mounted on 4 wheels trolley and has 2 working stations. On the front desk (upper right-side) we found the On/Off switch. Laterally, on the right-side and left-side there is the connections for the high-frequency currents. On the lower right-side and left-side we found knobs with 10 steps for adjusting the intensity of the currents for cutting and cauterization. In the middle there is an ammeter (type RGCD, SN 112498) which shows the intensity of the cutting current in the primary circuit .It has 2 scales of 2 A and 6 A. This equipment was manufactured after 1915, and functioned in the private office of Conf. Dr. Valer Cimoca, and also at the Clinic of Dermatology Cluj under the supervision of Prof. Dr. Coriolan Tataru. Conf. Dr. Valer Cimoca had the task to bring to life the museum of dermatologic-venereal diseases casts, which is an  achievement of great value.

The diathermy equipment with spark gaps, type Undala Standard, manufactured by Elektrizitats Gesellschaft Sanitas Berlin, GICKA, SN 119, 220 V and 720 W.

It is a device for therapy with short-waves produced by a high-frequency spark-gap and it has 2 working stations for warm therapy. At maximum intensity using special electrodes it will deliver power needed for surgery (cutting and cauterization). On the frontal side of the desk, made by white marble, there are the connections for electrodes, an On/Off switch, and the adjustment of the frequency is made in 15 steps. The electrodes for cutting and cauterization currents are on the marble plate. The short-waves heating electrodes are on the frontal side with 2 knobs, for selecting the wavelength accordingly to the patient. It was in use at the Municipal Hospital Dej, Department of Electro- Physiotherapy.

Neostherilotherm equipment, Sanitas, manufactured by Elektrizitats Gesselschaft Sanitas, Berlin, GICKA, SN 2174; 220 V, 35 W.

It is a special device for wart’s cauterization through high-frequency currents and wart’s burning with electric tips. It has 2 functions, cauterization and burning. The burning current is controlled with an ammeter with a 0-180 mA scale. It has been purchased by Prof. Dr. Coriolan Tataru in the third decade of the 20-th century and functioned in the Clinic of the dermatologic-venereal disease of the General Hospital Cluj, till 1972.

Pantostates with electronic tubes type Ventil-Pantostat

Ventil pantostat 1, Siemens , SN 172412, with 4 procedures:

-Galvanic currents

-Faradic currents

-Endoscopy

-Cauterization

It provides the possibility of adjust the current with a rheostat, to invert the polarity of  the faradic current and to adjust the waves trough a bipulsator. Also has a two scaled miliampermeter from 0-5 mA and from 0-50 mA(both ways).Those devices are replacing the Pantostat, Multostat, Variostat equipment by introducing electronic tubes instead of spark gaps and dismissing the use of vibrating massage.

Pulsator, Siemens , SN 2710173 for two procedures only:

-Galvanic currents and faradic currents for electro physiotherapy.

-The adjustments can be made in 10 steps in the primary circuit and 10 steps in the secondary circuit.

-The endoscopic voltage can be adjusted in three steps: 1.3 3 and 4.5 Volts.

-The variation system of amplitude is in three steps (1, 2, and 3).

Short waves therapy devices

Are replacing the diathermy equipment with spark gaps, their initial name is diathermy equipment with triodes. Triode which is basically a diode who has a third electrodes called grid between the cathode and anode, was invented by Lee de Forest in 1907.These apparatus are producing oscillations through the triode instead of spark gaps. The circuit schematics of the triodes have been realized by Ganot and Bordier.

The high frequency currents produced by a diathermy device is driven by using 2 electrodes in direct contact with patient’s skin. The metal electrodes are made of tin plates or lead plates which are considered to be the best by Border and Kowarschik.

Short waves therapy device type Ultratherm, Siemens, SN 2305486, 220 V, 50 Hz. The devices feature the following:

-On/Off switch

-Power adjustment knob

-Switch for heating of triode on the right side

-Switch for fine adjustment of power from 0-10 Joules.

Bibliography

1. Colectia de aparatura medicala “Pompiliu Manea“, Manea P., Mediamira Cluj Napoca 2004

2. Electrotherapie, Benedikt M , Wien 1868

3. An introduction to electricity and galvanism, London1803

4. Recherches d’eletrotherapie: la voltaisation sinusoidale, D’Arsonval, J.A., 1892

5. Dictionaire Encyclopedique Petit Larousse, Librarie Larousse, Paris, 1972

6. www.wikipedia.org

7. De l’electrisation localisée, Duchenne, G.B.Paris, 1855.

8. Enciclopedia Britannica

La collection d’appareilles médicaux de la clinique d’ophtalmologie de Cluj-Napoca

Dr. Eva Crisan

Afin du connaître les racines d’ou son issue les diverses spécialités médicales, la façon, dont elles se sont développés diversifies, a long de tempes afin de s’engage dont le combat pour la santé collective ou individuels en mettant á profit le ressource offertes par la recherché scientifique e le développement technologique, il est indispensable d’avoir de des musées de sciences médical. Ces musées, qui conservant le patrimoine technique, résultant d’une activité de rechercher est à la fois, générateur de recherchés, constituent une bien incommensurables.

Entre les deux guerres mondiales une important école médicale s’est développe a Cluj-Napoca, école qui commencent son activité en Mai 1919, est qui continua de nos jours. La activité médicale été orientes vers de buts: sur le plan théorique elle on visage tout d’abord l’enseignement est la recherché scientifique. On suit elle s’occupe des aspect cliniques concernant le problèmes de diagnose est  de traitement. Sur ce second plan l’activité se déployer don de nombreuses cliniques universitaires.

L’histoire de l’école médicale a été illustrée par des nombreuses personnalités c’est corps médical est devenu fameux par certaines membres d’exception, tels que les professeur Victor Babes, dont le contributions aux domaine de l’immunologie est de la morpho- pathologie furent essentielle. Le professeur Levaditi à son tour a été l’auteur des premières monographies de virologie.

Chaque clinique universitaire possèdes des appareillés est des instruments ayant une évident intéresse médicaux historique. Une collection d’appareillé médicaux peu être la propriété d’une faculté et d’une mussée pour pouvoir être mise on valeur, en tant qu’instruments scientifique e pouvant assurer de la sorte la sauvegarde de cet patrimoine.

Cette idée a été compris réalise par professeur ingénier Dr. Pompiliu Manea, qui a mis sur pied la collection d’instruments e d’appareillage médical provenant de la dotation technoscientifique d’autre fois de cliniques médicales de Cluj-Napoca, représentant le témoignage de niveau scientifique est technique de l’époque.

Dans notre expose nous nous rapportons seulement a la clinique d’ophtalmologie qui pose d’une riche est intéressant patrimoine d’appareillés spécialise dont nous allons présenter quelques pièces des première ordre.

2. La clinique d’ophtalmologie a été dirigée pendant plus des trente ans par le professeur Dumitru Michail (1886-1956), le fondateur de la collection. Il a commence son activité les 14 octobre 1919, et se fait remarque par l’organisation de l’enseignement supérieur ophtalmologique de mêmes que par l’organisation de l’assistance médicale. Il a cultivé des permanents contacts avec des personnalités scientifique et avec de dirigeants de clinique de tout le monde. A’occasion ses voyages le professeur s’est occupé d’établir de contact soutenu avec des entreprises spécialise pour la production des appareilles est des instruments médicaux. On 1921 il a voyager en Autriche, en Allemagne, est en Tchécoslovaquie, afin a quérir cette sort appareils.

L’évolution d’ophtalmologie fuie marquée par le moment cardinal de 1851 lorsque Hermann Von Helmholtz, professeur d’anatomie est de physiologie à l’université de Königsberg a découvert l’ophtalmoscope. Jusqu’ a lui l’examen ophtalmoscopique est des membranes intérieures de l’oeil était considéré comme entât impossible.

3. L’ophtalmoscope Helmholtz se compose de trois lentilles superposes ayant le but d’augmenter les pouvoir réflectorisé. Les loupes forment l’hypoténuse d’une boite ayant la conformation d’une prisme triangulaire, qui est ferme est soutenu par une manchon. La petite fente de la boit, qui forme une angle des 570, avec la plaque, présent un orifice devant lequel et on peut placer de lentilles concaves, par les quelles on regardé l’oeil illumine. On rapproche l’appareille est on dirige les lentilles des manière a refléter l’oeil que l’on désire examiner. On a néanmoins besoin d’une lampe est d’un préalable dilatation de la pupille. L’ophtalmoscope Helmholtz que nous avons décrit a été produit par l’opticien mécanique Eduard Mester de Berlin.

La découverte de cet instrument a considérablement élargie les limites d’investigations ophtalmologiques.

4. Par mis d’autres exemples dont notre collection se trouve l’ophtalmoscope l’appareille construit en 1861 par Hermann Iakob Knapp, ophtalmologue d’Heidelberg.

5. Le berlinois Richard Liebreicht (1846-1926) s’est également occupé des l’ophtalmoscopie est en 1863 il a réussit a créer l’ophtalmoscope Liebreicht, l’appareil le plus utilise en Europe, don notre collection possède un exemplaire.

6. Des variantes des cet instrument furent encore crée par Haab en 1905.

7. Le Suisse Edumund Landolt qui a vécu entre 1846-1926

8. L’ophtalmoscope de main tipe Morton réalise avant 1883.

9. L’ophtalmoscope binoculaire avec statif Thorner, 1901, fabrique à Berlin par Schmidt é Haensh

10. Un des pièces importante de notre recueilli est l’tonometre Schiotz, datant de 1924, est étalonné, signe par l’inventeur mémé è numéroté 472. On peut lire sur le couvercle de la boit le mont suivants: “Professeur Schiotz original tonometre, Made in Norway”. L’appareil est compagnie par une papier millimétrique sur le quelle sont tracée quatre courbe dénommées “Körrigate kurver Schiotz-tonometer 1924“. Sur le revers de cette fouille on distingue: Tonometer numéro 472-etalonée Oslo est e la signature l’inventeur John Schiotz. (si poza 11)

12. Le second tonometer que nous possédant est bien conservé il appartiens au tipe Stephenson –Voliski, fabrique par J. Veiss et Fis, 287, Oxford Street –London.

13. Sphéromètre tipe Sheitel, produit par Kroplin-Butzovv, de Meklenburg – utilise par la détermination des dioptries.

                    14. Cylindro-sphéromètre, pour la même utilisation.

15. Pour établir d’une façon comparative l’acuité des sens chromatique on se ce servit du disque chromatique –inventé par le docteur Helmbolt de Danzig.

16. Echelle étalon chromatique

17. D’un intérêt aparté son les deux lampes ou bougies consacrée a l’examen sur place a lit de malade; chaque d’elles se compose d’une tube métallique qui recouvre et protégé les bougie. Dans le parvis métallique est montée un loupe permet l’examen de l’oeil malade.

 
selon Roade.


         

  

        21. Trépan cornéen tipe Hippel

 

20. Sidéroscope – employé de repérer le corps étrangers accidentellement pénètre dans l’oeil.

 

19. D’une évident intérêt est une skiascope inventé par le docteur Roth utilise pour détermine la réfraction.

 

18. Lampes –datées approximatif 1825

 


23. Ophtalmo -dynamomètre tipe Landolt.

 


                         22. Identic 21   


24. Pupiloscop différentiel – après Hess, fabrication Carl Zeiss, Jena 1915

 


26. Trousse de lentille, autour de 1860

 


    

28. Keratoscop, dénommé a commencement astigmatoscope pour la détermination de courbure de cornée.

 

25. Lampe ophtalmologique après Vogt fabrique Carl Zeiss, Jena 1913

 


    27. Lentille brute

 


29. Adaptometer tipe Landolt 1885

 


45

30. Refractometer tipe Javal, 1881

Text Box: 30. Refractometer tipe Javal, 1881

31. Une pincette du professeur Knapp


MAF- TM (GM) videoendoscop hibrid, portabil, pentru   bronhoscopii si intubatii dificile oricând si în orice loc.


Endoscop flexibil portabil ce are încorporat sursa de lumina cu LED si sistem de înregistrare a imaginilor la o greutate de numai 540 grame. Are un ecran LCD rotativ. Poate memora pâna la 2063 imagini de înalta rezolutie sau pâna la 2 ore de film.

Date contact:

cid:image001.jpg@01C9974C.FEBEB6F0

Ing. Catalin Stupu

Email: cstupu@temco.ro

Mobil: 0744552454

Tel. /Fax.: 0232213107

Fiz. Veronica Balabaneanu

Email: vbalabaneanu@temco.ro

Mobil: 0757057803

Tel.: 0212524650

Fax.: 0212524667


X-RAY TUBES AND RADIOLOGY EQUIPMENT

Prof.dr.ing Pompiliu MANEA

I. THE RÖNTGEN TUBES

No more than 114 years have past since X-rays have been discovered. By all means, this is one of the greatest, if not even the greatest discovery of the 9th century. It happened on the evening of 8/9 November 1895, when Professor Wilhelm Conrad Röntgen (1845-1923) was investigating the external effects of a Hittorf type vacuum tube. According to Ph. Lenard’s indications, the tube was covered with black cardboard. This experiment had been performed at the Röntgen’s laboratory from the Physics Institute in Wűrtzburg.

            When trying to investigate the effects of the invisible cathode rays produced by a Hittorf’s tube, Röntgen’s assistant noticed a fluorescent effect on a small cardboard screen painted with barium platinocyanide and situated at a certain distance from the tube

After seven weeks of thorough experimental work, W. C. Röntgen reports to the Medical Physics Society of the Wűrtzburg University his original paper entitled Über eine neue Art von Strahlen” (On A New Kind Of Rays). Dated 28th of December 1895, his paper remains noteworthy in the annals of sciences. Initially called “X-rays”, the electromagnetic radiations had been later called “Röntgen radiations”, in the name of their discoverer. On the occasion of this denomination, the grate German physicist Max Planck was saying “Röntgen’s spark was enough to shine upon the interior of the human body”.

The Röntgen tube or the radiogenic tube is the generator or the X-ray source. It consists of a vacuumed balloon, made of a special type of glass called Pyrex glass. As with any vacuum tube, there is a cathode (K), which emits electrons into the vacuum and an anode (A) to collect the electrons, thus establishing a flow of electrical current, known as the beam, through the tube. A high voltage power source is connected across cathode and anode to accelerate electrons. Electrons from the cathode collide with the target (the anode) material, usually tungsten, molybdenum or copper, and accelerate other electrons, ions and nuclei within the anode material. Up to 0.3+3% of the kinetic energy of the accelerated electrons is transferred to the electrons extracted from the target, thus producing what we call the braking radiation or Bremsstrahlung. The rest of the energy is released as heat.

All along their history, Röntgen tubes have had different shapes and working principles. Yet in 1897, 32 Röntgen tubes were presented in the Revue Scientifique Industriale, France. Amongst them we find the tube patented by the Romanian physicist Dragomir Hurmuzescu (1865-1954) and manufactured together with Victor Chabaud.

Fig. 1 The Chabaud-Hurmuzescu tube. This is considered to be the first French tube. It has been presented for the first time, the 17th of April 1896, in front of the Physics Society and later, the 4th of May 1896, in front of the French Academy of Sciences. The first model had the target made of aluminium and the subsequent models had the target made of platinum.

In our collection we have the following Röntgen type tubes:

a) The Gas tubes were the first tubes, coming of the Crookes and Hittorf tubes. They have been called like that because of their vacuum which was not so advanced. The free electrons and the negative ions produced by gas dissociation inside the balloon were accelerated towards the anode, whilst the positive ions, also produced by gas dissociation, were accelerated towards the cathode.

The concept of “anti-cathode” has been presented to the French Academy of Sciences by Louis Benoist and Dragomir Hurmuzescu, the 17th of February 1896. The anti-cathode is the part of the vacuum tube, opposite the cathode. Upon it the cathode rays (electrons and negative ions) impinge. Nowadays, the anticathode is simply called the ”anode”, because of the positive electric charge it carries. Beacuse of the advanced vacuum (10-7 – 10-8 mmHg), the cathodic beam is exclusively composed of the electrons accelerated by the Röntgen tube’s filament which is the cathode (-). Two gas tubes from our collection are presented below.

Fig. 2 Gas tube produced by Silvanus P. Thomson, London. The tube called ”Focus”, type DRP has been presented the 13th of March 1896, in the ”Nature” revue. The tube has been preserved by Prof. dr. Dimitrie Negru. He use to be the first professor of radiology in Romania, working in Cluj. In 1920, he founded the first Radiological Institute in Romania. This X-ray tube has been delivered to our collection by courtesy of Prof. dr. Dumitru Radulescu.

Fig. 3 Self-adjustable gas tube, with “gas regeneration by electric spark”. At high voltage, a chemical regeneration of the void inside the X-ray tube is produced by an external electric spark. This is a DRG type X-ray tube, probably manufactured by Hector Pilon, in early 1900s. The tube has been delivered to our collection by courtesy of technician Iosif Biro from AJIRAM Cluj.

The anodes of the above mentioned X-ray tubes were cooled with air. With the first tube (fig. 1) a direct cooling on the glass was used, whilst. Subsequently, the cooling systems have been improved by using distiled water as a thermal agent. Water circulation was ensured by ”thermosyphon”.

b) The Coolidge tubes, also called “hot cathode tubes”. Sir William David Coolidge (1873-1975), a gentleman who has celebrated his centenary, invented in 1913 the first X-ray tube with “thermoelectric emission”. That was a major breakthrough in the radiological technique which lasts until nowadays. Like Emanuel R. N. Grigg said, that was the beginning of the “golden age” in radiology.

Even though the “filament” is known since 1879 and the “law of thermoelectric emission” also known as the “Edison effect” was already published, by Richardson, 12 years ago (1901), nobody before Coolidge has come with the idea of adding a Tungsten filament to an X-ray tube and to bring it to incandescence by heating it with an electric current generated by a transformer. So it was possible to obtain a cathodic beam exclusively made of electrons and to focus it by using a negatively charged electrostatic electrode. Thus the anodic current (Ia) is considerably increased, the electrons being dragged on the anodic target and the X-ray tube’s power increased to 10kW. That allows for reducing the patient’s exposure time and its radiation dose as well.

The publication of this invention in Physical Revue no. 6/1913 was followed by through investigations on creating a manufacturing technology for the new X-ray tubes. The use of the Gaede molecular pump allowed for getting a much more advanced void (10-8 mmHg), so the electrons doesn’t collide anymore with the gas ions in the tube. Increasing the power delivered to the anode required for its cooling. Hector Pilon, holds the patent no. 478-273/July 1914 and the exclusivity worldwide for its distilled water based anode cooling system.

It forth noting that, by the same period (1913), Julius Lilienfeld (1882-1963) attempted to increase the number of electrons by building a filament based X-ray tube. However, he didn’t come with the idea of heating the filament to incandescence.

Our collection holds more than 15 Coolidge type water cooled X-ray tubes but we shell only present here the oldest of them (fig. 4, 5, 6 and 7).

Fig. 4 Coolidge X-ray tube, Siemens-Reiniger with a single circular filament. Manufactured in 1922-1923, the tube was used by the Municipal Hospital from Reghin and has been donated to our collection by dr. Eugen Nicoara, the founder and the owner of this hospital, by the begining of the 20th century.

Fig. 5 Coolidge X-ray tube with a single linear filament, cooled with water. This Media Patent type tube was manufactured by Műller Röntgenröhre, the third decade of the 20th century and donated by dr. Vasile Nicolescu from Regin, the Mures district. 

Fig. 6 Coolidge X-ray tube with two circular eccentric filaments, cooled with water. This was manufactured by Phönix Radion Röhre (model EWDo100), after 1926, and donated by Mr. Rudolf Stransky, the first radiologic technologist in Cluj and in Transylvania.

Fig. 7 Coolidge X-ray tube, 6 kW, with linear filament and forced air cooling (radiator with blades plus fan). The tube is placed in a glass arch (the housing), with lead salt, for radioprotection. It has been manufactured by Tubix-Paris, the third decade of the 20th century, and donated by first technician Alexandru Klein, AJIRAM Cluj.

 

c) The Metalix tubes: manufactured after 1925, when Albert Bowers, a diploma engineer from Utrecht succeeds to weld, centrally on the X-ray’s glass tube, a metallic hoop made of chromate steel. The Metalix tube is serially produced by the Dutch company Philips.

            The metallic hoop, provided with an output gate for the radiation beam and covered with a 2.5 mm thick lead layer, allows for the absorption of the neutralizing radiations. The metallic hoop, also used for securing the X-ray tube on the device, is electrically connected to the ground thus allowing for balancing the anodic voltage and neutralizing the scattered electrons. Later on, a fully radiological protection of the X-ray tube was accomplished by using electro-insulating tubes made of pertinax, lined with rubber containing lead salt. Tube cooling is accomplished using either distilled water (stored in a tank) or forced air (with anode fins).

       Our collection holds 10 Metalix tubes, three of which being presented in figures 8, 9 and 10.

Fig. 8 Metalix X-ray tube, with a single linear filament, manufatured by CHF Műler AG, the third decade of the 20th century. Donated by first technician Otto Basa. AJIRAM Cluj.

Fig. 9 Metalix X-ray tube, with two linear filaments and cooled with air. Radio- and electro-protection is inshured by lead salt lined pertinax tubes. Multix Röhre MRGDo 45/130 (2/6kW) type tube, manufactured by Phönix Rudolstadt, the fourth decade of the 20th century, donated by first technician radiologist Ioan Ilea, AJIRAM Cluj.

Fig. 10 Multix X-ray tube, model MRGDo (45/220), two linear filaments, cooled with air, radio- and electro-protection, soft radiations filtering (1.2 mmAl). Manufacturing: Phönix Röntgenröhre Rudolstadt-Germany, the fourth decade of the 20th century. Donation: Dr. Traian Capusan, radiologist, director of the Cluj Sanitary Directorate and outstanding public health organizer.   

d) Douglas tubes (Dopellglass), built in 1931, only six years later than the Metalix tube. Consists of two concentric glass tubes of which the inner is voided and contains the two electrodes (the anode and the cathode). The metallic hoop with the gate for the useful radiation beam is welded on the outer glass tube. So it was possible to get an X-ray tube with increased power at the node and with a uniformly distributed anode voltage along the tube. By placing the tube inside a porcelain arch (the housing), a maximum radio- and electro-protection was ensured, according to the standards of that time.

A forced cooling system consisting of radiating fins and a fan driven by an AC series motor was used. Two of the five Douglas tubes owed by our collection are presented in figs. 11 and 12.

Fig. 11 Douglas X-ray tube, with fixed anode and two linear filaments and with power developed at the anode of 2 and 10 kW respectively. A self-filtering of 1.2 mmAl is ensured. The DRGDo 45/220 (DD100/2/10) model was manufactured by the end of the fourth decade of the 20th century. Manufacturer: Phönix Röntgenröhre Rudolstadt-Germany. Donation: Prof. dr. Valer Secarea, clinc hospital (Medicala I) from Cluj. 

Fig. 12 Douglas X-ray tube, model DD100/2/10 with anodic voltage of 100kV, two filaments powered at 2kV and power delivered at the anode of 10kW respectively. The tube, mounted in a Tuto Diagnost type porcelain housing (used with the Tuto Heliophos radiological equipment and Graetz rectifiers) was cooled with air. Manufacturer: Rörix VEB Röhrenwerke Rudolstadt-East Germany, the fifth decade of the 20th century. Donation: Prof. dr. Mihai Covalcic, Radiology Clinic, Cluj. 

e) X-ray tubes, with fixed anode and oil cooling. After the occurrence of the electro-insulated high voltage cables, a proper protection of both the patients and the personnel became possible. Inserting the X-ray tubes into the housing also became possible.

Several types of protection were provided by the housing: a mechanical one, to prevent the glass made tube from braking, an electrical one, to prevent both patients and the personnel from high voltage electrocution, and a radiological one, to prevent people from overirradiation.

The housing also provides a better cooling of the X-ray tube, by dissipating the heat developed at the anode. A special type of electro-insulating oil, with a high capacity of taking over the heat and of transferring it to the housing and the exterior walls (convection) is used. The oil circulates due to the difference in temperature between the anode and the cathode, the principle being known as thermosiphon.

All these accomplishments allowed for reducing the size and weight of the X-ray tubes, by keeping the same power developed at the anode. Thereby, a 10 kW Metalix tube of 635 mm length and weighting 5kg, was three times longer and six times heavier than the oil cooled tube of the same power (220mm and 0.8kg). Beside the considerable material savings, oil cooled tubes bring a grater ease in their manipulation and use. Combinations of oil, water and air cooling systems can also be used.

Three oil cooled X-ray tubes from our collection are presented in figs. 13, 14 and 15.

Fig. 13 Oil cooled X-ray tube, with two linear filaments, 2/10kW power and 100kV voltage. The model ERGDo 45/220ök was manufactured by Phönix Röntgenröhre Rudolstadt-Germania, by the end of the fifth decade of the 20th century. Donation: Dipl. Eng. Jan Micu, ACIRAM Bucharest.  

Fig. 14 Oil cooled X-ray tube, type D 100/10ök, Ua=100kV, P=10kW with self filtering of 0.85mmAl. The tube was mounted in a KF type housing, produced by the TUR company in Dresden, the fifth decade of the 20th century. Donation: Dipl. Eng. Bogdan Manea, AJIRAM Cluj.

Fig. 15 Oil cooled X-ray tube, type D 100/2/10ök, Ua=100kV, P=1/10kW, with self filtering of 1 mmAl . Manufacturer: Phönix Röntgenröhre Rudolstadt-Germany, the sixth decade of the 20th century. Donation: dr. Ion Dumitrescu, radiologist at clinic hospital (Medicala II), Cluj.

f) Rotating anode X-ray tube. Only four years after inventing the Metalix tube, the same Dutchman Albert Bowers, a Philips engineer this time, has succeeded in 1929 to present to the German Society of Radiology his new Rotalix X-ray tube containing the first “rotating anode”. It is true that the idea belongs to the Wood Englishman. He suggested in 1897 to revolve the X-ray tube so the radiation point might continuously change in position, thus avoiding dangerous anode’s overheating.

The fixed anode X-ray tubes were able to deliver at the anode a maximum power of 15kW but, only when the anode voltage was generated either by a four kenotrons Graetz bridge or by a six kenotrons three-phase bridge.

Conversely, the maxim power of a rotating anode X-ray tube increases to 42kW/100kV.

A grate desideratum was achieved once the rotating anode X-ray tube has been discovered:

achieving an optical focus as small as to get a better picture resolution and the same time to an outbreak more heat to dissipate as heat developed at the anode and to increase the intensity of the radiation beam.

The anode is made of tungsten, the melting point at 38,000 C, in plate form and rotated by an asynchronous electric motor with 3000 rpm.

The first rotating anode X-ray tubes completed in 1933 by Philips Bauart were cooled by forced air ventilation.

Fig. 16 X-ray tube with rotating anode, P40 type, Rotalix-Pantix, 42 kW/100kV, used in Röntgen apparatus, Siemens-Pantix-Tuto, with 4 or 6 kenotrons and cooled with air. Produced by Phönix Röntgenröhre Rudolstadt-Germany, the sixth decade of the 20th century. Donation Prof.dr. Gheorghe Chisleag, from Radiology Clinic of „Saint Spiridon” Hospital form Iasi-Romania.

Less than a decade, to reduce materials consumption, and reducing size and weight, getting at the same time an increase of power, at the end of fourth decade, Compagnie Générale de Radiologie (CGR), accomplish the X-ray tube with rotating anode, oil cooled, Movix-CGR type, in which both length and weight are reduced by half, compared to the same air-cooled X-ray tubes.

From our collection we present the following three tubes, with rotating anode, oil cooled, different powers, mounted in whole armour-plated and protected housings, GD-125 – TUR Dresden type, in figures 17, 18 and19.

Fig. 17 X-ray tube with rotating anode and oil cooling, DR125/2/30ö type, with two filaments of 2kW and 30kW, power developed at the anode, anodic voltage up to 125kV. Produced by Phönix Röntgenröhre Rudolstadt-Germany, the sixth decade of the 20th century. Donation Prof.dr.doc. Dumitru Radulescu, Radiology Clinic Cluj 

Fig. 18 X-ray tube with rotating anode and oil cooling, DR125/2/50ö type, with two filaments of 2kW and 50kW, power developed at the anode. Maximum anodic voltage 125kV. Produced by Phönix Röntgenröhre Rudolstadt-Germany, the sixth decade of the 20th century. Donation: Prof.dr. Gheorghe Badea, “Prof.dr. Octavian Fodor” Clinical Hospital Cluj-Napoca.

Fig. 19 X-ray tube with rotating anode and oil cooling, DR125/30/50ö type, with two filaments of 30kW and 50kW, power developed at the anode, Maximum anodic voltage 125kV. Produced by Phönix Röntgenröhre Rudolstadt-Germany, the sixth decade of the 20th century. Donation: Prof.dr. Nicolae Andronescu, Radiology Clinic from Rehabilitation Hospital Cluj-Napoca.

g)      Radioterapy X-ray tubes. As x-ray tubes for radiodiagnostic are featured by the anodic tensions, that can riched up to a maximum of 125kV (nowadays 150kV), high anodic currents that vary between 300 mA and 1.000 mA. While X-ray tubes for radiotherapy, are featured by high anodic tensions (60-400 kV) and low anodic currents (7-15mA). Operating times for tubes used in radiodiagnostic are very short, from order of thousandths of seconds until few seconds, while at radiotherapy tubes, operating times are of the order of minutes, even to 15-20 minutes.  Having a long standing life, radiotherapy tubes benefit of combined cooling agents (water + oil) and in a high flow between 1.5-20 l/min.

Radiotherapy tubes are built-up only with rotating anod, with power up to a maximum of 8kW and not very different compare to the tubes for radiodiagnostic, in terms of constructive.

From our collection we present three Röntgen type tubes for radiotherapy: figure 20, 21, 22.

Fig.20. X-ray tube for contact and intracavity radiotherapy, model Chaoul. TK 60/8ö type, used at Chaoul device- ITM Romania (made by dipl.eng. Jirair Krikorian). Produce by Phönix Röntgenröhre Rudolstadt-Germany, the fifth decade of the 20th century. Donation: Prof.dr.Iuliu Capusan, Clinical Hospital Cluj.

Fig.21. X-ray tube for profound radiotherapy, thermoelectronic emission, Coolidge tube, TIII/4 type, air cooling (environmental air). Acceleration tension Ua=200kV and anodic current Ia=4-5mA. Produced by Phönix Röntgenröhre Rudolstadt-Germany, the third decade of the 20th century. Donation by Prof.dr.doc. Sorin Schiau, “Dr. Daniel Danielopolu” Institute of Anatomy and Normal and Pathology Physiology, Bucharest.

Fig.22. X-ray tube for porfound radiotherapy, monted on porcelain and leed housing,  recycled oil cooled at a flow of 20 l/min, inner anode, inside of target breech. Used at shallow radiotherapy (80-120 kV), semi-profound radiotherapy (140-180 kV) and profound radiotherapy (180-200 kV). TT 200/15 type, apparatus used in profound radiotherapy Stabilivolt type, Siemens II factory, Budapest, Hungary. Produced by Phönix Röntgenröhre Rudolstadt-Germany, the fourth and fifth decade of the 20th century. Donation by dr. Henriette d’André and Dr. Daniil Costea, Radiology Clinic Cluj.

II. MEDICAL RADIOLOGY EQUIPMENT

In the technological evolution of medical devices for radiology and their applications in medicine, we can define these stages:

  • 1896-1920, is a suite of technological explosion, due to discoveries in all fields of science pioneers;
  • 1920-1950, period of steady progress and prosperity;
  • 1950-1970, a new period of technical explosion, thanks to the introduction of electronics to medical equipment;
  • 1970 until nowadays, still a wholesome time, remarkable advances that have led to the digital image, tele-radiology and minimizing the harmful effects of radiation.

Due to the introduction of digital substraction, we obtain a much higher X-ray image proccesing superior to conventional radiography. Digital processing of radiological image enable storege on various media (X-ray film, magnetic strip, electronical support etc), and by introduction of fiber optics and satelitte communications, can be connected by networks, radiological devices in a laboratory, hospital, city, state, country, continent or even intercontinental.

From our collection we present only three devices, figures 23, 24 si 25:

Fig.23. Röntgen device, Odelga type, entirely of wood with stand (Canada wood pine) and work in upright position (vertically). The device is not armour-plated and unprotected agains radiations and anodic tensions. Is equipped with a X-ray tube Coolidge type, cooled with water, which is mounted in a wood housing and fastening system only in the lower part, through wooden screws and clamps. Hight voltage transfomer  Odelga type, with maximum voltage Ua=100 kV, anodic current  Ia=60 mA and electrical power P=6kW. Control console Veifa Werke type, Frankfurt am Main, power supplied to the primary winding, alternative electric voltage 130-160 V. It is estimated that this device has been manufactured before 1915-1917. The device has beed delivered by courtesy of Dr. Sabin Ciurdareanu and dr. Emil Comsa, those who established the first laboratory of Radiation Hygiene, from Transylvania, located in Cluj, who worked more than a quarter of a century in this laboratory.

Fig.24. Röntgen device for diagnostic, with fixed examination stand. Works only in vertical position and it’s made of wood and sheets of aluminium, witch makes filtering of low radiations. Use a Röntgen Coolidge tube, with one linear filament and cooled with water. The X-ray tube is fitted in a wood housing,  which opens with a button spring and clamping screws and necklaces are all made of wood. Control console Siemens Halske type, has built-in the high voltage transformer with dry insulation (electro-conducting cerous mass), electrical power of Pa=60 kW, the maximum anodic voltage Ua=80 kV and anodic current Ia=60mA. Device fabrication is estimated around the years 1918-1920, belonged to Prof.dr. Marius Hanganutiu, resident physician at Medical Clinic no.1, Cluj, and donated by his son Prof.dr.ing. Marius Hanganutiu.

Fig.25. Mobile Röntgen device, Meganos type, for radiology diagnostic, only by radiographies at bedside or in medical emergencies. The high voltage transformer, is fed at 110/220V and secundary voltage Ua=45 kV, an anodic current Ia=30mA and electric insulation oil. Provided with a fixed anod tube, with cooling air ventilated, placed in a metal housing, leed armour plated and protected against  high voltage, insulated cables and porcelains terminal ends. Control console is mobile, may be fixed on the rack and it has a mechanical relay timing and control button for anodic current. The device moves on four wheels, at bedside or in the medical emergency rooms. Siemens-Reiniger fabrication, Germany, in the interwar period, before 1940 and has been used in medicine campaign by Romanian Army Sanitary Corps in the Second World War. Donated by dr. Aurel Metea, physician radiologist and manager of Huedin Hospital, together with dr. Pavel Voiculescu, physician radiologist.



디지메드로고 Rx dentar digital  wireless PROX cu radioviziograf  si dispozitiv de vizualizare – procesare imagine  X VISION

 Senzor CCD , ¾ cm , 12 biti

 Procesor PDA 4,3’’ , touch screen

 Permite vizualizarea imediata , memorarea si prelucrarea imaginilor si   salvarea pe card SD

 



3D Modeling of the Induced Electric Field of Transcranial Magnetic Stimulation

D. Rafiroiu1, S. Vlad1, L. Cret1, R. Ciupa1

1 Technical University of Cluj Napoca/Electrical Engineering Department, Cluj Napoca, Romania


Abstract The objective of our study was to make use of the MQS solver available under SEMCAD-X simulation environment and the high-resolution 3D head-and-brain model available through the IT’IS Foundation, to make a full 3D analysis of the TMS procedure. The electromagnetic field induced by two typical stimulating coils has been modeled, and their efficiencies compared. The comparison was made based on the distributions of the induced electric field, the activation function and the induced current density distribution.

Keywords— Transcranial magnetic stimulation, 3D modeling, inhomogeneous brain tissue, figure-of-eight coil, Cadwell type coil

INTRODUCTION

Currents of high magnitude inside the body can lead to a stimulation of muscle and nerve tissue. Targeted stimulation of certain areas is used in many medical applications like cardiac pacing, pain treatment, wound healing, Alzheimer disease, Parkinson disease being just a few to name [1]. However, the electric stimulation technique (EST) suffers from serious drawbacks. Surface electrodes can not be used for the stimulation of deeper structures and the implantation of electrodes comes along with the need of surgical treatment.

The magnetic stimulation technique (MST) is a noninvasive method to excite peripheral and brain neurons. Weak electric currents are induced in the tissue by rapidly changing magnetic fields (electromagnetic induction). Its major advantage over the EST comes from the possibility to penetrate highly resistive tissues (like the skull in the brain stimulation) and a grater focality which allows for a selective stimulation of the nervous tissue. The first non-invasive magnetic stimulation of human and animal peripheral nerves was reported by Bickford and Freeming in 1965 [2]. Throughout the 1970’s Barker analyzed the interaction of short, pulsed magnetic fields for use in nerve stimulation, leading to the first demonstration of cortical magnetic stimulation in 1985 [3]. Over its 20-years history, trans-cranial magnetic stimulation (TMS) has evolved into a tool for human brain mapping, a way to dissect cognitive and perceptual processes and as a treatment for psychiatric diseases [4]. Contrary to electrical stimulations, TMS treatments are relatively painless and easy to perform.

Fig. 1 Typical TMS equipment. a) Principle, b) RLC circuit in TMS, c) The exponentially decaying stimulation current and its time derivative

Typical TMS equipment consists of a main unit creating a high current pulse connected to a hand-held stimulation coil (see Fig. 1 a). A simplified schematic diagram depicting the four functional units of a magnetic stimulator is drafted in Fig. 1 b. It consists of a charging circuit, energy storage, a discharging circuit and the stimulating coil.

In all commercially available stimulators, the energy is stored in large, high-voltage capacitors, typically fed by a charging system connected to the power line. During the discharge, the energy stored in the capacitor is transferred into the coil, typically using a thyristor, which is capable of switching large currents in a few microseconds. The stimulation coil is normally housed in a plastic cover. Due to its low electrical resistance and high heat conduction capacity, copper is the material of choice for the coil windings. Two different coil designs are in widespread use: a circular coil and a figure-of-eight coil. Circular coils typically consist of approximately ten windings with a radius ranging from 3-5 cm. The size of a figure-of-eight coil is similar, typically consisting of two times ten windings. Other TMS coil types have also been reported [5].

Several authors have calculated the induced current distribution during a TMS pulse in high resolution models of the brain, using numerical methods [6], [7], [8], [9]. Amongst the numerical methods frequently used for such simulations, finite element method and finite difference method are the most popular. Due to the high computational effort of these calculations only the dominant frequency in the spectrum of the TMS pulse was taken into account. Because of the short pulses used in TMS, a time-harmonic approximation is no longer valid and transient effects have to be considered. Other approaches, like the one based on the Scalar Potential Finite Difference (SPFD) method [1] makes it possible to perform a full Fourier analysis of the induced currents in a reasonable time.

In the last decades, the Finite-Difference Time-Domain method (FDTD [10], [11]) has proven to be an efficient and powerful numerical method. Especially for interactions of complex human body models and electromagnetic fields, the FDTD method is highly valuable to assess electromagnetic compatibility at radio frequencies. At lower frequencies, the FDTD method becomes inefficient due to the explicit time integration scheme. However, the electro and magneto quasi-static approximations (EQS and MQS) to Maxwell equations have been implemented using the finite element method (FEM) in frequency domain and the non-uniform but rectilinear computational grid of the FDTD method has been reused, to benefit from both methods [12].

The objective of our study was to make use of the MQS solver available under SEMCAD-X simulation environment [13] and a high-resolution 3D head-and-brain model available through the IT’IS Foundation [14], to make a full 3D numerical analysis of the TMS procedure.

Methods

To achieve our goal, the real geometrical features of the human head as well as the electrical characteristics of the brain and its surrounding tissue had to be considered. To represent the geometry of the head and the brain, the male head part of the “Enhanced Virtual Family Model”, graciously provided by Speag AG, has been used. Figure 2 show the CAD images of the 6 parts of the head-and-brain model: the scalp, the skull, the grey matter, the white matter, the cerebrospinal fluid (CSF) and the cerebellum.

Fig. 2 The geometrical head-and-brain model: a) scalp, b) skull, c) grey matter, d) white matter, e) CSF, f) cerebellum

At 5 mm above the surface of the scalp (8 mm above the brain surface), two systems of stimulating coils have been placed: a conventional figure-of-eight system of coils (Fig. 3 a) and a Cadwell-type [5] system of pointed coils (Fig. 3 b). The two circular lobes of the first stimulating system are 25 mm in radius. The characteristic dimensions of the second stimulating system are illustrated in Fig. 3 c, their values being: , , , . Eight turns were considered for each lobe of the stimulating coil and the excitation current loops have been set in such a way that at the central part of the coil the currents have the same direction. A detailed analysis of various TMS stimulating coils’ characteristics and their efficiencies, including the ones’ mentioned above, can be found in [15].

Table 1 Conductivity and permittivity of the biological tissues used in the model of the head

Fig. 3 The positioning and the shape of the two modeled stimulating systems of coils: a) figure-of-eight stimulating system, b) Cadwell stimulating system, c) characteristic dimensions of the Cadwell system

Normally, the excitation current flowing through the stimulating coils is a short pulse current like the one illustrated in Fig. 1 c. In our simulation, a time-harmonic approximation of the current pulse, with frequency  and amplitude was used. Each lobe of the stimulating coils consists of 8 turns, thus giving a total excitation current of 12 kA. The total exposure from the pulse signal which is applied can easily be determined by decomposing the pulse into a Fourier series and run multiple simulations at the different harmonics , specifying the corresponding material parameters. Finally, the results can be extracted and subsumed.

While modeling the induced currents in tissues, the results of the field equations will depend on the dielectric properties assumed for the tissues and for this reason it is important to consider the mean value of the conductivity at frequencies that are close to those involved in magnetic stimulation [8]. The conductivity and permittivity values that have been used in our model, for the different cerebral tissues are presented in Table 1, together with their reference. As the values available in the literature are sometimes different, their mean value was chosen. Everywhere in the brain, the relative permeability was set to .

TISSUE TYPE

s

[S/m]

er

REF.

Scalp

0.35

4e3

[9,19,17,19]

Skull

0.0132

5.2e5

[9,16,17,19]

Grey matter

0.33

5e7

[9,17,18,19]

White matter

0.2

3e7

[16,17,18]

CSF

1.54

11e3

[9,16,17]

Cerebellum

Not relevant for the model

SIMULATION rESULTS

Each of the two models (a figure-of-eight and a Cadwell type stimulating coil placed in the same position relative to the head model) have been voxelized, resulting in total number of 75,500 Mcells for each of the two models. The total simulation time for each model was 16 minutes, on a P4 3.6 GHz computer.

The first to be investigated was the magnetic field distribution, at the moment when the excitation current reaches its peak value ( ). Figure 4 shows the distribution of the magnetic flux density in the coil plane (transversal plane) and in a plane perpendicular to the coil (“coronal” plane). In order to have a better representation of the field distribution, a logarithmic scale (in dB) was used for plotting. All values are normalized to the maximum value within the plane. A high concentration of the magnetic field at the surface of each coil is observed. The magnetic field concentration is higher in the case of the Cadewll coil (Fig. 4 b and Fig. 4 d) compared to the figure-of-eight coil (Fig. 4 a and Fig. 4 c). Figure 4 e shows the logarithmic scale that has been used in all plots.

For a quantitative view on the magnetic field distribution, the magnetic flux densities along several extraction lines, parallel to the transversal plane, have been plotted (Fig. 5).

Typical values for the TMS magnetic field are: about 2 T on the coil surface and 0.5 T in the cortex [20]. Yet our results show a magnetic field almost twice as strong on the coil surface and more than 6 times weaker in the cortex. This can easily be explained by the high concentration of the total electric current within a single filamentary current loop which makes the gradient of the magnetic field to be very high.

    e)

Fig. 4 Distribution of the magnetic flux density within the transversal plane (a and b) and within the “coronal” plane (c and d) of the two modeled coils: figure-of eight (left), Cadwell (right)

Fig. 5 Distribution of the magnetic flux density along extraction lines situated at different depths within brain and parallel to the coil’s transversal plane (distances d from the brain surface are 0, 10, 20, 30 and 40 mm). On the left hand side of the figure the distributions of the magnetic induction B along each coil’s axis is plotted.

The next to be analyzed was the electric field induced in the head. Figure 6 show the distribution of the electric fields induced by the two stimulating coils in the “coronal” plane of the head, while considering it as a homogeneous tissue with s=0.33 S/m and er=11,000. Again, the logarithmic scale was used for plotting. The maximum values, Emax, of the overall induced electric fields within the plane at wt =p/2 are 165 V/m for the figure-of-eight coil and 163.5 V/m for the Cadwell coil respectively. 

 

a)                                              b)

Fig. 6 Distribution of the overall induced electric field in the “coronal” plane of the homogeneous head model by the figure-of-eight coil (a) and by the Cadwell coil (b).

Fig. 7 Distribution of the Ex component of the induced electric field, along an extraction line parallel to the Ox axis, at 30 mm from the surface of the brain and the corresponding activation function

Even though the maximum electric field induced by the Cadwell coil is a little bit smaller that the one induced by the figure-of-eight coil, its distribution within the brain is different and could be more important to certain applications. Along the extraction line illustrated in Fig. 6 for example (at 30 mm inside the brain), the Ex component of the induced electric field is higher for the Cadwell coil than for the other coil (Fig. 7). When an action potential has to be generated along the axon of a nerve cell which is oriented along the x axis, the required activation function is defined as  [15]. Figure 7 show both the  component of the induced electric field and its derivative along an extraction line parallel to the Ox axis and situated at 30 mm from the surface of the brain. In the case of the Cadwell coil, both  and the activation function have grater values than in the case of the figure-of-eight coil. The negative values of the activation function determine the depolarization (excitation) of the axon membrane while the positive ones determine its hipper-polarization (inhibition). So, the activation function produced by the Cadwell coil is more prone to axon excitation than the one produced by the figure-of-eight coil. In other situations, action potentials are to be generated in the synaptic regions (dendrites). In such cases, the activation function is proportional to the  and again the Cadwell coil seams to be more effective. 

Another interesting plot has been obtained when running the model with an inhomogeneous brain tissue (Fig. 8). Again the Cadwell coil seamed to have a higher penetration power than the figure-of-eight one.

a)                                              b)

Fig. 8 Distribution of the overall induced electric field in the “coronal” plane of the inhomogeneous head model by the figure-of-eight coil (a) and the Cadwell coil (b).

A better view of the induced electric field can be obtained when restricting the plot area to the inhomogeneous brain tissue. Figure 9 show the distribution of the overall electric field induced in the cerebrospinal fluid, in the grey matter and in the white matter by the Cadwell coil exclusively. Note the difference between the values of the conductivity and the relative permittivity of the three tissues (Table 1). The highest value of the induced electric field is in the cerebrospinal fluid and in the grey matter (43.25 V/m in the “coronal” plane and 16.55 V/m in the transversal plane, at 30 mm from the brain surface).

 

a)                                              b)

Fig. 9 Distribution of the overall electric field in the “coronal” and transversal plane of the inhomogeneous brain model (CSF, GM and WM) induced by the Cadwell coil .

Fig. 10 Distribution of the overall electric field in the inhomogeneous brain model (CSF, GM and WM) induced along an extraction line in the “coronal” plane at different distances d from the surface of the brain. The dashed and full lines correspond to the electric field induced by the Cadwell coil and by the figure-of- eight coil respectively

A comparison of the electric fields induced by the two coils at different depths in the brain tissue is made in figure 10. Everywhere the electric field induced by the Cadwell coil is stronger than the one induced by the other coil.

Lastly, the distribution of the current density within the brain was analyzed. This is strongly affected by the differences in conductivity between the three brain tissues. The stimulated area is primarily the motor cortex, mostly composed of grey matter (GM) [8]. The tissues surrounding the GM are primarily the cerebrospinal fluid (CSF), and the white matter (WM); therefore it is important to study the effects of conductivity changes at the interfaces between those tissues. The CSF is highly conductive relative to the other tissues, and its influence on the current distribution within the brain is a fundamental aspect that should be described in three dimensions. Figure 11 shows the current density distribution within the brain, in the “coronal” and transversal planes, at 30 mm from the brain surface. The high concentration of the current density in the CSF and in the GM is evident. Its maximum values within the “coronal” and transversal planes are 48.7 A/m2 and 10.7 A/m2 respectively.

Fig. 11 Distribution of the current density induced in the “coronal”  and  transversal planes, at 30 mm from the brain surface by the Cawell coil

CONCLUSIONS

The magneto quasi-static (MQS) solver under Semcad X has proved to be a reliable tool for investigating the basic phenomena underlying transcranial magnetic stimulation. Its robustness and rapidity in getting reliable solutions for complex 3D models are its primary winning cards.

Through its optimization module, Semcad X also offers the possibility to step forward in trying to perform optimization tasks for the TMS coils. The three geometric parameters of the Cadwell coil, for instance, could be optimized in order to get the best field distribution at the stimulation site, depending on patient specific conditions.

ACKNOWLEDGMENT

This work was made possible by the support of Speag AG team. The valuable assistance of Dr. Peter Futter is gratefully acknowledged. Our work was funded by the Romanian University Research Council, within the grant no: ID_1078

REFERENCES

[1].     Barchanski A. (2007) Simulation of low-frequency electromagnetic fields in the human body, PhD TU Darmstadt, 2007

[2].     Bickford R.G, Freeming B.D. (1965) Neuronal stimulation by pulsed magnetic fields in animals and man. Digest of the 6th Int. Conf. of Medical Electronics in Biology and Engineering, pp 112

[3].     Barker A.T, Jalinous R, Freeston I.L (1985) Non-invasive magnetic stimulation of human cortex. Lancet, 1(8437):1106-7

[4].     Paulus W, Hallet .M, Rossini P.M and Rothwell (1999) Transcranial magnetic stimulation. Proc. of the International Symposium on Transcranial Magnetic Stimulation, Gottingen, 1998, Elsevier, 1999

[5].     Cadwell J.A Magnetic stimulator coils, US Patents 4994015/1991

[6].     Nadeem M, Thorlin T, Gandhi O, Persson M (2003) Computation of electric and magnetic stimulation in human head using 3-d impedance method. IEEE Trans. Biomed. Eng., 50(7), pp 900-906

[7].     Kowalski T, Silny J,  Buchner H, (2002) Current density threshold for the stimulation of neurons in the motor cortex area. Bioelectromagnetics, 23, pp 421-428

[8].     Lopez-Fernandez F.I., Influence of brain tissue inhomogeneity on induced currents due to Transcranial Magnetic Stimulation. PhD The University of Sheffield (2005)

[9].     Yang S., Xu G., Wang L., Chen Y., Wu H., Li Y., Yang O. (2006) 3D realistic head model simulation based on transcranial magnetic stimulation. Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. Supp., Issue , Aug. 30 2006-Sept. 3 2006 pp:6469 – 6472

[10].  Yee K.S. (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenas and Propagation, 14(3), pp 302-307

[11].  Taflove A., Hagness S. (2005) Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3 ed. Artech House, Boston, MA, 2005

[12].  Benkler S., Chavannes N., Kuster N. (2008) Highly detailed low frequency full body electromagnetic field simulations in 3-D Proc. of  the XIX General Assembly of the International Union of Radio Science (URSIGA 2008)

[13].  Schmid & Partner Engineering AG, SEMCAD-X Reference Manual, July 2008

[14].  http://www.itis.ethz.ch/index/index_humanmodels.html

[15].  L. Cret, Contributii privind studiul si optimizarea tehnicii de stimulare magnetica a sistemului nervos. PhD thesis, UT Cluj Napoca, 2007

[16].  Ramon C., Schimpf PH., Haueisen J. (2004) Effect of model complexity on EEG source localozations, Neurology and Clinical Neurophysiology  2004:81

[17].  http://dnl.ucsf.edu/users/dweber/dweber_docs/eeg_scd.html

[18].  Herman I.P. Physics of the human body, Biological and Medical Physics, Biomedical Engineering series, Springer, 2007

[19].  Miklavcic D., Pavselj N. Electric Properties of Tissues, Wiley Encyclopedia of Biomedical Engineering, John Wiley & Sons, Inc. 2006

[20].  „TMS terminilogy“, BioMag Laboratory at Helsinki University Central Hospital: www.biomag.hus.fi/tms/terminology.html

Author:    Dan Rafiroiu

Institute: Technical University of Cluj Napoca

Street:    15, C. Daicoviciu

City:       Cluj Napoca

Country: Romania

Email:     dan.rafiroiu@et.utcluj.ro



EVALUAREA ETIOPATOGENETICĂ sI TERAPEUTICĂ A BOLNAVILOR ATEROSCLEROTICI PRIN METODA ANALIZEI NON LINEARĂ (NLS)

Puia Oana Alina, Drd., As. Univ. Fiziopatologie, UMF „Iuliu Hatieganu” Cluj-Napoca, medic specialist chirurgie vasculara

Prof. dr. Luminita Plesca Manea – conducator stiintific doctorat

REZUMAT

Studiul s-a efectuat la Centrul Medical ELMAVITAL din Cluj-Napoca pe un numar de 100 indivizi umani, divizati în 4 loturi: lotul martor – sanatos si 3 loturi având caracteristici diferite clinice si umorale ce-i încadreaza în sindrom metabolic. Celor 3 loturi li s-a dat diferite preparate ce influenteaza patologia vasculara (Vitis+jeleu de catina, Omega 3-6-9, Rosuvastatina,). S-a determinat cu aparatul METATRON profilul glicemic, profilul lipemic, indicele de masa corporala (IMC) si evolutia diferentiata sub tratament.

IPOTEZA DE LUCRU

Analiza NLS poate depista în stadiul precoce leziunile vasculare aterosclerotice, reducând astfel riscul complicatiilor. Analiza NLS poate evidentia procese aterosclerotice simultan în mai multe arii: cerebrale, carotidiene, coronariene, abdominale  si membre inferioare etc., cu gradient diferit de afectare.

Fig. 1- NLS cu ATS în diferite arii vasculare topografice

            Aparatul Methatron care implementeaza acest sistem de analiza, functioneaza în acord cu principiul amplificarii semnalului de initiere a unei stari entropice noi, în urma emisiei unui vortex magnetic asupra creierului, modulat la frecventa theta Θ cerebrala. Aceasta favorizeaza modificarea activitatii creierului, fiind posibila accesarea informatiilor de la nivelul subconstientului. (1,2)

            În termeni fizici Methatron este un generator non-linear cuantic de oscilatii electromagnetice ce interfereaza cu biocâmpul informational al creierului.

            Metoda se bazeaza pe emisia si detectia biocâmpurilor ca proces de interactiune dintre receptor–emitator si  structurile extra- si intracelulare. Modificarile vortexului câmpurilor magnetice sunt determinate de activitatea metabolica celulara si a transferarii de informatie între sistemele reglatoare (sistem nervos). Aceasta legatura permite diagnosticarea si influentarea activitatii prin emitere de câmpuri modulatoare cu rol terapeutic. Zgomotul de fond tisular (mediu statistic) reflecta astfel starea de sanatate sau boala a unui sistem de organe sau a unor elemente intracelulare; totodata putându-se identifica o cauzalitate complexa pe baza receptiei câmpurilor si a analizei spectrale si statistice a acestora. Holograma matricei electromagnetice este determinata dinamic permitând si efectuarea unor diagnostice predictive. (1,2)

            MATERIAL sI METODĂ

Grupul de studiu cuprinde 100 de barbati si femei divizati în 4 clase d.p.d.v. al riscului vascular aterosclerotic.

Lot I martor - Clasa cu risc scazut:

IMC= 25-29 kg/m2 si talie sub 94 cm la barbati sau sub 80 cm la femei

Fara factori de risc.

Lot II -  Clasa cu risc moderat:

IMC= 25-29 kg/m2 si talie 94-101 cm la barbati sau 80-87 cm la femei

Factori de risc nutritional

Risc cardiovascular

Terapie cu Vitis + jeleu de catina

Lot III - Clasa cu risc crescut:

IMC peste 30 kg/m2 cu talie crescuta sau

IMC 25-29 kg/m2 si talie peste 102 cm la barbati sau peste 88 cm la femei

Factori de risc cardiovascular

Patologie cardiovasculara aterosclerotica

Terapie cu Omega 3-6-9

Lot IV - Clasa cu risc foarte crescut

IMC peste 40 kg/m2 cu talie crescuta

Factori multipli de risc cardiovascular

Patologie cardiovasculara aterosclerotica

Comorbiditate multipla.

Terapie cu Rosuvastatina

Studiu clinic a fost efectuat în perioada ianuarie-septembrie 2009 în Centrul Medical ELMAVITAL sub egida Conf. dr. Liana Marginean, fiziopatolog, neurolog si homeopat, pionera în România în statuarea metodei de explorare neconventionala prin biorezonanta magnetica NLS.

REZULTATE sI DISCUŢII

Tabel 1. Profilul lipemic, glicemic, tensional si somatic al pacientilor investigati

Parametri

media aritmetica

Lot I

martor

Lot II

Vitis + jeleu

Lot III

Omega 3-6-9

Lot IV

Rosuvastatina

IMC

<25

>30

>30

>30

TG mg%

≤102

≤251

≤276

≤230

HDL mg%

≥60 mg

≤35

≤45

≤40

Tensiune arteriala

115/75

168/90

155/85

165/93

Glicemie

≥100 mg%

115mg%

117mg%

125mg%

            Pacientii au fost investigati prin NLS computerizat si Echo Doppler carotidian, pentru a putea aprecia metabolismul energetic celular si riscul aterogen in teritoriul circulatiei cerebrale, ca si reactia la stres, respectiv nivelul hormonilor de stres ( cortizol, adrenalina).

Reevaluarea cazurilor s-a facut dupa 90 de zile prin aceeasi metodologie.

Tabel 2. Evaluare dupa 3 luni

Parametri

media aritmetica

Lot I

martor

Lot II

Vitis + jeleu

Lot III

Omega 3-6-9

Lot IV

Rosuvastatina

IMC

<25

>25

>26

>30

TG mg%

≤102

≤180

≤182

≤195

HDL mg%

≥60 mg

≤50

≤50

≤40

Tensiune arteriala

115/75

140/88

135/77

165/93

Glicemie

≥100 mg%

93mg%

97mg%

98mg%

DISCUŢII:

La o reevaluare dupa 3 luni s-a observat:

l        O scadere semnificativa a IMC-ului la loturile II si III, mai putin lotul IV.

l        Loturile II si III au înregistrat cea mai mare scadere a trigliceridelor.

l        Cea mai importanta crestere a  HDL-ului s-a înregistrat la loturile II si III.

l        Tensiunea arteriala a scazut considerabil in loturile care au folosit vitis si catina (II,III).

l        O scadere a glicemiei s-a observat in toate cele trei loturi tratate cu diversi antioxidanti

  • Procesul aterosclerotic la nivelul vaselor mari ale trunchiului evaluat prin NLS (entropie 4) coexista cu un proces de vasculita posibil alergica, deoarece raspunsul vascular la alergenii infectiosi se manifesta inclusiv si prin tensiunea arteriala scazuta.

·         La nivelul vaselor mari ale trunchiului valoarea colesterolului este mult crescuta, aceasta fiind evaluata printr-un indice de asemanare spectrala mic si o entropie mare (2).


Fig. 2. Evaluarea prin NLS a evolutiei sub tratament a unui pacient

     Cresterea entropiei atesta progresul procesului aterosclerotic la care se adauga, ca si factori concomitenti, prezenta microorganismelor oportuniste. Hipertrofia benigna de prostata si infectiile din micul bazin determina o depresie imunitara care împreuna cu fumatul reprezinta factori de risc în aparitia aterosclerozei; Analiza  NLS poate depista în stadiul precoce leziunile vasculare reducând astfel riscul complicatiilor; Observam un proces de ateroscloreza vasculara în evolutie la un pacient care nu are simptomatologie relevanta; Analiza NLS poate evidentia procese simultan în mai multe arii: cerebrale, carotidiene, coronariene, abdominale si membre inferioare etc., cu gradient diferit de afectare.

Avantaje generale ale Analizei non-lineare computerizate în studiul nostru

·         Metode este noninvaziva, cu caracter repetitiv la 3 luni.

·         Evalueaza parametri multipli functionali, organici, informationali într-un interval scurt de timp.

·         Depisteaza precoce unii factori de risc, unele predispozitii morbide si  modificari functionale precoce aflate în stadiul preclinic.

·         Evalueaza stresul acut sau cronic însotitor al oricarui proces patologic.

·         Evalueaza agresiunea câmpurilor electro-magnetice externe, a iradierii si a altor forme de câmpuri nocive.

·         Depisteaza încarcarea microbiana, toxica si alergica.

·         Ajuta medicul în alegerea celor mai potrivite optiuni terapeutice.

·         Evalueaza biocompatibilitatea oricarui tip de agent terapeutic, inclusiv patoalimentatia.

CONCLUZII:

  1. Analiza non-lineara permite elaborarea unui diagnostic precoce în ateroscleroza si monitorizarea factorilor de risc în absenta unei patologii clinice declarate (stadiul precoce).
  2. Utilizarea analizei nonlineare împreuna cu tehnicile imagistice în aterogeneza, crescând acuratetea diagnosticarii prin dimensiunea dinamica si predictiva.
  3. Remarcam pe lânga efectele oarecum asteptate cu privire la scaderea în greutate, normalizarea valorilor trigliceridelor si a HDL colesterolului, efectul  hipoglicemiant al tuturor produselor testate, dar mai ales impactul statinelor si al Omega 3-6-9 în stoparea agravarii procesului aterogenetic.

4.       Aceste rezultate ne permit sa aprofundam studiul corelatiilor clinico paraclinice ale alimentelor homeopate si alopate cu impact asupra homeostaziei vasculare umane insistând în special pe corectarea factorilor de risc din sindromul X metabolic, determinând cresterea calitatii vietii.

ABSTRACT

This study was performed at Cluj-Napoca Elmavital Medical Center on 100 human subjects, divided in 4 lots: control lot – healthy and 3 lots with different humoral and clinical characteristics of metabolic syndrome. These 3 lots have received different substances that influence the vascular pathology (Vitis + jelly of catina, Omega 3-6-9, Rosuvastatina,). Glycemia and lipidic profile, body mass index (BMI) and the different evolution under treatment were determined with Metatron apparatus.

Bibliografie

1.         Plesca-Manea L, Marginean L, Sfrângeu C, Puia O, Luput G, Margineanu A.M., Toparlan E, Bujoreanu I. - Aportul NLS (analizei non-lineare) multidimensionale în diagnosticul precoce al bolii vasculare periferice. Revista de Economie si Administratie Sanitara, 2009, Vol.53-54 (nr. 1-2), 62-70.

2.         Marginean L, Plesca-Manea L, Sfrângeu C, Luput G, Margineanu A.M., Toparlan E, Bujoreanu I. - Analiza non-lineara computerizata (NLS) – noua metoda de diagnostic si terapie neconventionala. Revista de Economie si Administratie  Sanitara, 2009,  Vol.53-54 (nr. 1-2), 55-61.


SEROPREVALENŢA INFECŢIEI ANAMNESTICE TORCH ÎN POPULAŢIA GENERALĂ sI LA FEMEILE DE VÂRSTĂ FERTILĂ DIN TERITORIUL CENTRULUI REGIONAL DE SĂNĂTATE PUBLICĂ CLUJ

Radu Rodica1, Mîrza Tudor Valentin1, Molnar Anamaria1, Coroiu Zoe Edita1, Rebreanu Romana1, Mîrza Camelia Manuela2, Radu Rares Nicolae3, Molnar Mirel2

1.      Centrul Regional de Sanatate Publica Cluj

2.      U.M.F. „Iuliu Hatieganu” Cluj-Napoca

3.      student, U.M.F. „Iuliu Hatieganu” Cluj-Napoca

Rezumat

A fost realizat un studiu epidemiologic transversal, care a urmarit seroprevalenta anticorpilor IgG antitoxoplasma gondii, antirubeolici, anticitomegalici si antiherpetici pe un lot populational de 973 persoane din 11 judete ale Transilvaniei, din care a fost selectat un esantion de 407 femei aflate la vârsta fertila. Prevalenta infectiei anamnestice în populatia generala a fost de 60,33% pentru toxoplasmoza, 66,19% pentru rubeola, 72,76% pentru infectia cu CMV si 25,80% pentru infectia cu virus herpetic tip II. Prevalenta medie a infectiei anamnestice la populatia feminina de vârsta fertila din cele 11 judete, a fost de 63,14% pentru toxoplasma, 67,08% pentru rubeola, 74,20% pentru CMV si 27,76% pentru infectia cu virus herpetic.

În sublotul de femei la vârsta fertila, populatia la risc pentru infectie a fost de 36,86% pentru toxoplasma, de 32,92% pentru rubeola, de 25,80% pentru infectia CMV si de 72,24% pentru infectia cu virus herpetic tip II. În acelasi sublot, riscul anual estimat de infectie a atins valori maxime la vârste cuprinse între 15-24 ani pentru toxoplasmoza (5,72%), rubeola (8,39%) si infectie CMV (0,64%) si între 35-44 ani pentru infectia cu virus herpetic tip II (0,8%).

Cuvinte cheie: infectie TORCH, prevalenta, risc anual estimat de infectie

Introducere

Dintre toate infectiile care pot determina malformatii congenitale, cele cu Toxoplasma gondii, virus rubeolic si citomegalovirus par a fi cele mai importante. Herpesul poate cauza si el defecte congenitale dar mai rar. Exista presupuneri ca si virusurile zona-zosterian, rujeolic, urlian si precum si virusurile hepatitice au influenta asupra fatului, dar studii de cohorta pentru malformatiile congenitale care au cuprins aceste infectii, nu au gasit nici o relatie cauzala semnificativa. Termenul TORCH reprezinta acronimul de la: toxoplasmoza, rubeola, infectia cu citomegalovirus si infectia herpetica.

Scop

Scopul acestui studiu a fost determinarea seroprevalentei infectiei TORCH în populatia de vârsta fertila din teritoriul arondat Centrului Regional de Sanatate Publica (CRSP) Cluj comparativ cu prevalenta infectiilor TORCH în populatia generala din teritoriul CRSP Cluj si a riscului de infectie în populatia feminina de vârsta fertila. Datele epidemiologice s-au obtinut  din cele 11 judete ale Transilvaniei arondate Centrului.

Material si metode

A fost realizat un studiu epidemiologic transversal, care a urmarit seroprevalenta anticorpilor IgG antitoxoplasma gondii, antirubeolici, anticitomegalici si antiherpetici la populatia din cele 11 judete din Transilvania, în functie de varietatea unor factori epidemiologici ca vârsta, genul sau distributia geografica.

Determinarea marimii esantionului s-a facut utilizând programul EpiInfo 3.5.1 si aplicatia online smarQuest [1].

Rezultate

S-a calculat un esantion reprezentativ de 973 persoane, cuprinzând toate grupele de vârsta OMS. Dupa calculul esantionului, s-a realizat stratificarea pe judete si stratificarea pe grupe de vârsta. Esantionul a cuprins populatia din arii geografice diferite – cele 11 judete din Transilvania – iar structura pe medii (urban/rural) a esantionului a fost de 47,79% din mediul urban si 52,21% din mediul rural. Din cele 973 de persoane studiate, 34,3% au fost de gen masculin iar 65,7% au fost de gen masculin. Din totalul femeilor, 407 (63,69%) au fost de vârsta fertila iar 232 (36,30%) s-au încadrat în restul grupelor de vârsta. Esantionul de femei fertile a cuprins grupele de vârsta începând cu 15-19 ani pâna la 40-44 ani.

Prevalenta infectiei anamnestice în populatia generala a fost de 60,33% pentru toxoplasmoza, 66,19% pentru rubeola, 72,76% pentru infectia cu CMV si 25,80% pentru infectia cu HSV tip II (tabel 1).

Tabel 1. Seroprevalenta anticorpilor IgG pozitivi din esantionul  populational studiat

Prevalenta medie a infectiei anamnestice la populatia feminina de vârsta fertila din cele 11 judete studiate este de 63,14% pentru toxoplasma, 67,08% pentru rubeola, 74,20% pentru CMV si 27,76% pentru infectia cu herpes virus.

            În sublotul femeilor de vârsta fertila, seroprevalenta anticorpilor IgG antitoxoplasma se situeaza în intervalul 53,85% – 65,33%, valoarea minima fiind la 15-19 ani iar maxima la 20-24 ani, seroprevalenta anticorpilor IgG antirubeolici se situeaza în intervalul 55,38% – 74,24%, valoarea minima fiind la 15-19 ani iar maxima la 30-34 ani, seroprevalenta anticorpilor IgG anti-CMV se situeaza în intervalul 68,85% – 79,17%, valoarea minima fiind la 40-44 ani iar maxima la 35-39 ani iar seroprevalenta anticorpilor IgG anti-HSV se situeaza în intervalul 23,08% – 33,82%, valoarea minima fiind la 15-19 ani iar maxima la 25-29 ani ( fig.1).

Fig 1. Seroprevalenta infectiei anamnestice TORCH la femeile de vârsta fertila

Prevalenta medie a infectiei anamnestice în populatia de femei la vârsta fertila din teritoriul studiat (1049980 femei) si riscul anual estimat de infectie pentru sublotul de 407 femei fertile din esantionul reprezentativ studiat sunt prezentate în tabelele 2 si 3.

Tabel 2. Prevalenta infectiei anamnestice în populatia de femei la vârsta fertila

Etiologie

Populatia feminina imuna

%

Populatia feminina la risc

%

Toxoplasmoza

662957

63,14

387023

36,86

Rubeola

704327

67,08

345653

62,92

infectie cu CMV

779085

74,20

270895

25,80

infectie cu HSV

291474

27,76

758506

72,24

Tabel 3. Riscul anual estimat de infectie, în sublotul de femei la vârsta fertila

Discutii

Distributia pe grupe de vârsta a esantionului a evidentiat modificarea structurii pe grupe de vârsta a populatiei, adica îmbatrânirea ei. Ca o consecinta a scaderii natalitatii, populatia din grupele de vârsta 0-4 ani, a cuprins un numar scazut de subiecti.

Distributia anticorpilor TORCH a fost similara pentru cele doua loturi, exceptie facând toxoplasma; frecventa acestor anticorpi a fost mai mare în populatia generala, fata de sublotul femeilor fertile. Rata infectiei pentru toxoplasma a fost  mai mare la femeile fertile, comparativ cu aceleasi grupe de vârsta din  populatia generala.

Prevalenta anticorpilor antitoxoplasma variaza în functie de grupele populationale, depinzând de circulatia parazitului si de receptivitatea populatiei. Rezultatele studiului nostru sunt conforme cu datele din literatura [2, 3, 4, 5].

Din totalul lotului populational (973 persoane) au fost pozitive 587 persoane pentru anticorpi anti-toxoplasma. Dintre acestea, 312 persoane au fost din mediu rural unde seropozitivitatea a fost de 61%, diferenta fiind statistic semnificativa comparativ cu prevalenta pe întreg teritoriul Transilvaniei. Se impune o prima observatie ca în rural incidenta anticorpilor anti-toxoplasma este mai mare decât în urban. Analizând rezultatele serologice pozitive la lotul populational si lotul de femei fertile constatam ca rata pozitivitatii variaza între 35,62%-72,62% la lotul populational si 25%-76,32% la lotul de femei fertile. Populatia feminina la risc pentru toxoplasmoza este de 36,86%, riscul anual estimat de infectie, în sublotul de femei la vârsta fertila fiind maxim în perioada 15-24 ani (5,72%).

Campaniile de  imunizare fata de rubeola având ca tinta femeile de vârsta fertila au ridicat provocari logistice multiple, si au fost ulterior complicate de dificultatea evitarii vaccinarii femeilor gravide. Rezultatele prezentului studiu indica un contingent semnificativ de femei de vârsta fertila, susceptibile la rubeola (32,92%), riscul anual estimat de infectie, în sublotul de femei la vârsta fertila fiind de 8,39% în la vârste cuprinse între 15-24 ani si de 5,4% la vârste cuprinse între 25-34 ani. Imunitatea la rubeola depinde de mai multi factori [6]. Exista o crestere a nivelului imunitatii fata de rubeola odata cu vârsta. Prevalenta anticorpilor antirubeolici nu a prezentat diferente mari între grupele de vârsta ale femeilor fertile, dar în populatia generala a fost mai scazuta.

Trend-ul seroprevalentei în functie de vârsta depinde de acoperirea vaccinala la diferitele grupe de vârsta. Acoperirea vaccinala este mare la grupele de vârsta tinere. Constatarea ca anticorpii antirubeolici au fost prezenti la 67,08% din femeile fertile corespunde cu datele din literatura. Anticorpii au fost gasiti la peste 80% dintre femeile adulte din Europa, Anglia, SUA, Australia si Canada [7]. Diferente în seroprevalenta rubeolei între populatia urbana si rurala sunt diverse si contradictorii de la o tara la alta. Femeile din rural sunt mai susceptibile decât în urban, dar susceptibilitatea nu este semnificativa statistic. Diferentele între urban si rural se pot datora unei expuneri mai reduse si unei izolari a persoanelor în zona.

Citomegalovirus-ul este endemic în toata lumea afectând aproape toata populatia iar  seroprevalenta anticorpilor CMV IgG variaza în functie de varietatea factorilor epidemiologici: vârsta, distributia geografica, statusul socio-economic, statusul marital si paritatea [8, 9]. În România, prevalenta variaza între 70% si 80% iar în studiul nostru rata prevalentei (72,76%) se pliaza între aceste valori. S-a observat o crestere pas cu pas a seropozitivitatii, odata cu cresterea vârstei, atingând un maxim de 96,80% la grupa de vârsta 55-59 ani. Prevalenta anticorpilor CMV în perioada de vârsta fertila variaza în functie de grupurile populationale. Prezentul studiu arata un risc anual estimat de infectie CMV în sublotul de femei la vârsta fertila, maxim la vârsta cuprinse între 15-24 ani (0,64%), populatia feminina fertila la risc fiind de 25,80%.

La noi în tara nu exista studii privind prevalenta infectiei cu virus herpetic tip II, cu toate ca exista intentia de a introduce o strategie de screening dupa realizarea unui studiu pilot la femei sub 25 ani care nu au fost însarcinate si care sunt la risc de a dezvolta infectii cu transmitere sexuala (ITS). Investigatia populationala din studiul nostru demonstreaza ca ponderea reala a infectiei cu virusul herpetic este de 25,80% ceea ce corespunde cu datele din literatura, cu diferente în functie de vârsta, mediul de provenienta al cazurilor si judet. În sublotul femeilor fertile, prevalenta este de 27,76%, valori crescute înregistrându-se la grupele de vârsta 15-19 ani si 20-24 ani. Dintre femeile la vârsta fertila din teritoriul arondat CRSP Cluj, populatia feminina la risc este de 72,24%, riscul anual estimat de infectie cu virus herpetic tip II, calculat pentru sublotul de 407 femei fiind maxim la 35-44 ani (0,80%).

Concluzii

1.Studiul demonstreaza ca infectia TORCH este raspândita printre femeile de vârsta  fertila. Asocierea dintre factorii epidemiologici (vârsta, distributie geografica) cu infectia TORCH sugereaza ca femeile de vârsta fertila sunt expuse acestor infectii.

2. Studiul prezent, bazat pe date epidemiologice si pe probele serologice efectuate, demonstreaza riscul infectiei cu agenti TORCH la toate vârstele.

3. Datele prezentate de noi nu constituie o imagine completa a prevalentei anticorpilor anti-TORCH în populatia generala si populatia de femei fertile din zona noastra geografica, pentru aceasta fiind necesare o supraveghere epidemiologica si un program de screening.

Bibliografie

1. *** – smarQuest – Aplicatii de calcul. http://www.smarquest.ro/ro/resources.html

2. VAN DER VEEN J., POLAK M.F.: Prevalence of toxoplasma antibodies according to age with comments on the risk of prenatal infection. J. Hyg., Camb., (1980), 85, 165.

3. REMINGTON J.S., MCLEOD R, DESMONTS G.: Toxoplasmosis. In: Remington JS and Klein JO (eds.): Infectious diseases of the fetus and newborn infant, 4th ed., W.B. Saunders Co., Philadelphia, 1995:140-266.

4. LAMB G.A., FELDMAN H.A.: Risk in acquiring toxoplasma antibodies; a study of 37 "normal" families. JAMA, 1968;206:13005-1306.

5. BERGER F., GOULET V., LE STRAT Y., DESENCLOS J.C.: Toxoplasmose chez les femmes enceintes en France: évolution de la séroprévalence et de l’incidence et facteurs associés, 1995-2003, Rev Epidemiol. Sante Publique, 2009;57(4):241-8.

6. USTAÇELEBI S., KÖKSAL İ., CANTÜRK H. et al: Detection of antibodies against TORCH in pregnants. Mikrobiol Bul., 1986:20:1-8.

7. ROBERTSON S.E., FEATHERSTONE D.A., GACIC-DOBO M., HERSH B.S.: Rubella and congenital rubella syndrome: global update. Rev. Panam. Salud. Publica, 2003;14(5):306-15.

8. MATHUR A., JINDAL I., CHATURVEDI U.C.: A serological study of Cytomegalovirus infection at Lucknow. Ind. J. Med. Res., 1981; 73:678-681.

9. NETO W.C., RUBIN R., SHULTE J., GIUGLIANI R.: Newborn Screening for Congenital infectious Disease. Emerg. Infect. Dis., 2004, 1(6): 1069-1073.

Abstract

A transverse epidemiological study was made, following antitoxoplasma, anti-rubella, anti-CMV and anti-HSV type II IgG seroprevalence on a sample of 973 people from 11 counties in Transylvania, from which a group of 407 women of childbearing age was selected. The prevalence of infection in the general population was 60.33% for toxoplasmosis, 66.19% for rubella, 72.76% for CMV infection and 25.80% for type II HSV infection. The average prevalence of the anamnetic infection in the female population of childbearing age, in the 11 studied counties, was 63.14% for toxoplasmosis, 67.08% for rubella, 74.20% for CMV and 27.76% for the HSV infection.

In the 407 group of women of childbearing age, the population at risk for infection is 36.86% for toxoplasmosis, 32.92% for rubella, 25.80% for CMV infection and 72.24% for HSV type II infection. In the same group, the estimated annual risk of infection reached maximum at ages 15-24 years for toxoplasmosis (5.72%), rubella (8.39%) and CMV infection (0.64%) and between 35-44 years for type II HSV infection (0.8%).

Keywords: TORCH infection, prevalence, estimated annual risk of infection


EFECTELE SUPLIMENTĂRII DE CUPRU ASUPRA BALANŢEI OXIDANŢI-ANTIOXIDANŢI ÎN CONDIŢII DE EFORT FIZIC

Mîrza Camelia Manuela1, Mîrza Tudor Valentin2, Plesca-Manea Luminita Eugenia1, Uifalean Ana1, Popa Dorina1, Caldare Elena1

1. Catedra de Fiziopatologie UMF „Iuliu-Hatieganu” Cluj-Napoca

2. Centrul Regional de Sanatate Publica Cluj-Napoca

Rezumat

În lucrarea de fata ne-am propus sa urmarim efectele prooxidante si antioxidante ale Cu la animalele supuse efortului fizic, carora li s-a asigurat un supliment de cupru în ratia alimentara. Cercetarile au fost efectuate pe 3 loturi a câte 10 sobolani albi, rasa Wistar: lotul I - animale care au efectuat efort fizic, timp de 4 saptamâni, prin proba de înot; lotul II - animale la care s-a administrat prin gavaj bucofaringian Cu 2 doze/saptamânal, timp de 4 saptamâni; lotul III - animale care au efectuat efort fizic dupa programul lotului I si, carora li s-a administrat cupru dupa programul lotului II. S-a recoltat sânge venos din sinusul retroorbitar în zilele 1, 15 si 29, din care s-au dozat: parametrii antioxidanti: acidul uric, ceruloplasmina; parametrii stresului oxidativ: lipoperoxizii – MDA legata. Rezultatele ne-au indicat cresterea capacitatii an-tioxidative totale (cresterea acidului uric si ceruloplasminei) si scaderea stresului oxidativ (scaderea lipoperoxizilor). Cercetarile efectuate demonstreaza efectul protector al Cu, de adaptare la stresul oxidativ, prin îmbunatatirea mecanismelor de aparare antioxidative.

Cuvinte cheie: cupru, efort fizic, antioxidanti.

Introducere

            Cuprul este un microelement (oligoelement), care se gaseste în organism în cantitati foarte mici. Absenta din alimentatie determina, dupa o perioada mai lunga sau mai scurta de timp, maladia caracteristica.

O atentie deosebita se acorda alimentatiei în sportul de performanta. Efortul fizic, prin natura sa, determina cresterea potentialului de formare a SRO, desi doar o mica parte de oxigen este utilizata în acest scop. Suplimentarea cu antioxidante (nutritive si medicamente) previne stresul oxidativ de efort, grabeste recuperarea postefort si creste performanta sportiva. La sportivii de performanta trebuie supravegheate cu atentie concentratiile serice de Cu si de ceruloplasmina [1, 2].       

            În lucrarea de fata ne-am propus sa urmarim efectele prooxidante si antioxidante ale Cu la animalele supuse efortului fizic, carora li s-a asigurat un supliment de cupru în ratia alimentara. Scaderile valorilor serice ale Cu la animalele neantrenate, ca urmare a pierderilor si biodistributiei consecutive a acestui oligoelement, ne-a determinat sa studiem influenta su-plimentarii de Cu asupra balantei oxidanti/antioxidanti la animale antrenate la efort.

Materiale si metode

Cercetarile au fost efectuate pe 3 loturi a câte 10 sobolani albi, rasa Wistar, masculi cu greutatea cuprinsa între 160-200 g, alimentati normal pe durata experimentului: lotul I - animale care au efectuat efort fizic, timp de 4 saptamâni, prin proba de înot; lotul II - animale la care s-a administrat prin gavaj bucofaringian Cu (Granois de Cuivre, Monaco): 0,02 mg/100 g/doza, 2 doze/saptamânal, timp de 4 saptamâni; lotul III - animale care au efectuat efort fizic dupa programul lotului I si, carora li  s-a administrat cupru dupa programul lotului II.

Pentru determinarea nivelului plasmatic al indicatorilor serici, la 1, 15 si 29 zile s-a recoltat sânge venos din sinusul retroorbitar din care s-au dozat: parametrii antioxidanti: acidul uric [3]; ceruloplasmina [4]; parametrii stresului oxidativ: lipoperoxizii – MDA legata [5, 6].

Rezultate

            1. La lotul I, cuprinzând sobolani supusi efortului, prin proba de înot, se constata: cresteri semnificative ale ceruloplasminemiei si acidului uric dupa 2 si 4 saptamâni de antrenament; cresteri foarte semnificative ale lipoperoxizilor (MDA).

            2. La lotul II, cuprinzând sobolani care au primit supliment de cupru, se constata: cresteri semnificative ale ceruloplasminemiei si acidului uric; scaderi semnificative ale lipoperoxizilor.

            3. La lotul III, cuprinzând  sobolani care au primit supliment de cupru si care au fost supusi unui program de antrenament zilnic prin înot, se constata: cresteri foarte semnificative ale ceruloplasminei, acidului uric, fata de valorile bazale initiale; scaderi foarte semnificative ale lipoperoxizilor, fata de valorile initiale.

Rezultatele noastre pentru acidul uric la loturile studiate arata:

·         pentru probe perechi - pentru lotul I valori mai mici, intens semnificativ  (p < 0,001),  în ziua 1 fata de zilele 15 si 29 si în ziua 15 fata de ziua 29; pentru lotul II valori mai mici, intens semnificativ  (p < 0,001), în ziua 1 fata de zilele 15 si 29 si în ziua 15 fata de ziua 29; pentru lotul III valori mai mici, intens semnificativ (p < 0,001), în ziua 1 fata de zilele 15 si 29 si în ziua 15 fata de ziua 29

·         pentru probe neperechi - pentru ziua 1 valori semnificativ mai mici (p < 0,05), la loturile I si II fata de lotul III; pentru ziua 15 valori mai mici, intens semnificativ (p < 0,001), la loturile I si II fata de lotul III; pentru ziua 29 valori mai mici, intens semnificativ (p < 0,001), la loturile I si II fata de lotul III

Pentru ceruloplasmina rezultatele la loturile studiate arata:

·         pentru probe perechi - pentru lotul I valori mai mici, intens semnificativ (p < 0,001),  în ziua 1 fata de zilele 15 si 29 si în ziua 15 fata de ziua 29; pentru lotul II valori mai mici, intens semnificativ (p < 0,001), în ziua 1 fata de zilele 15 si 29 si în ziua 15 fata de ziua 29; pentru lotul III valori mai mici, intens semnificativ (p < 0,001), în ziua 1 fata de zilele 15 si 29 si în ziua 15 fata de ziua 29

·         pentru probe neperechi - pentru ziua 1 valori mai mici, intens semnificative (p < 0,001), la lotul I fata de loturile II si III; pentru ziua 15 valori mai mari, intens semnificative (p < 0,001), la lotul I fata de lotul II; valori mai mici, intens semnificative (p < 0,001), la lotul II fata de lotul III; pentru ziua 29 valori mai mari, intens semnificative (p < 0,001), la lotul I fata de lotul II; valori mai mici, intens semnificative (p < 0,001), la lotul II fata de lotul III;

Rezultatele noastre pentru MDA la loturile studiate arata:

·         pentru probe perechi - pentru lotul I valori mai mici, intens semnificativ  (p < 0,001),  în ziua 1 fata de zilele 15 si 29 si în ziua 15 fata de ziua 29; pentru lotul II valori mai mari, intens semnificativ (p < 0,001),  în ziua 1 fata de zilele 15 si 29 si în ziua 15 fata de ziua 29; pentru lotul III valori mai mari, intens semnificativ (p < 0,001), în ziua 1 fata de zilele 15 si 29 si în ziua 15 fata de ziua 29

·         pentru probe neperechi - pentru ziua 1 valori semnificativ mai mari (p < 0,05), la lotul I fata de lotul III; valori mai mari, intens semnificative (p < 0,001), la lotul II fata de lotul III; pentru ziua 15 valori mai mari, intens semnificative (p < 0,001), la lotul I fata de loturile II si III; pentru ziua 29 valori mai mari, intens semnificative (p < 0,001), la lotul I fata de loturile II si III; valori semnificativ mai mari (p < 0,05), la lotul II fata de lotul III.

Fig. 1. Acidul uric la loturile studiate. Valori medii. Semnificatie statistica

Fig. 2. Ceruloplasmina la loturile studiate. Valori medii. Semnificatie statistica

Fig. 3. MDA la loturile studiate. Valori medii. Semnificatie statistica

Discutii

Stresul oxinitroxidativ (SON) reprezinta totalitatea deteriorarilor oxidative produse de speciile reactive ale oxigenului (SRO) si ale azotului (SRN) la nivelul celulei sau la nivelul întregului organism. El este asociat cu perturbarea balantei prooxidante/antioxidante (PO/AO), în favoarea primei componente [7, 8, 9, 10, 11]. Sunt bine cunoscute efectele benefice ale efortului fizic în promovarea sanatatii si prevenirea diferitelor îmbolnaviri. Totusi, efortul cronic reprezinta o forma de SO asupra organismului, stres care poate altera echilibrul între prooxidanti si AO.

Datorita stabilitatii sale puternice si corelatiei pozitive între concentratia sa plasmatica si cea a Cu, se sugereaza ca dozarea ceruloplasminei ar putea fi un indicator pentru apre­cierea statusului Cu în organism. Prin activitatea sa feroxidazica, ceruloplasmina reprezinta o veriga de legatura între metabolismul Fe si Cu. Ceruloplasmina limiteaza cantitatea de radicali liberi ca antioxidant neenzimatic (antiperoxidant). Metaloproteinele ce contin cupru (hemocupreina, hepatocupreina, cerebrocupreina, citocupreina etc.) sunt superoxiddismutaze (Cu-SOD), în prezenta lor având loc o dismutare accelerata a superoxidului în oxigen si peroxid. Superoxiddismutaza (SOD), cunoscuta si sub denumirea de metalotioneina este ubicuitara, fiind întâlnita de la bacterii pâna la om. Cu-SOD au structuri dimerice cu localizare citosolica si tetramerica cu localizare extracelulara si legata de membrana [12, 13].

Antrenamentul de rezistenta poate determina o scadere marcata a Cu în ser, a capacitatii totale de legare a Fe, a saturarii transferinei si o modificare a raportului ceruloplasmina enzimatica/ceruloplasmina imunoreactiva. Reducerea nivelului de Cu poate afecta activitatea biologica a ceruloplasminei si a functiilor fiziologice legate de activitatea AO. La sportivii de performanta trebuie supravegheate cu atentie concentratiile serice de Cu si de ceruloplasmina [14].

Conform datelor din literatura, la nivel muscular, concentratia Cu a fost crescuta la grupul masculilor supusi exercitiului fizic. A fost raportat faptul ca mioglobina musculara a fost crescuta în muschii care au fost direct supusi efortului. Ceruloplasminemia a fost de asemenea mai mare la femele decât la masculi. Exista doua teorii care explica activitatea crescuta a ceruloplasminei asociata cu efortul fizic. În primul rând, cresterea ceruloplasminei asociata exercitiului fizic poate fi cauzata de o conditie de stres fizic, deoarece ceruloplasmina serica creste în conditii de stres. În al doilea rând, cresterea ceruloplasminei poate fi legata de trans-portul de Fe si activitatea eritropoietica. Desi Cu este un micronutrient esential, aportul excesiv poate fi toxic. Multe dintre efectele toxice ale Cu, precum cresterea peroxidarii lipi­delor în membranele celulare, alterarea proteinelor si a acizilor nucleici, sunt legate de rolul Cu în ge-nerarea radicalilor liberi ai oxigenului. Ficatul este cel mai sensibil organ în ceea ce priveste toxicitatea Cu. Scopul acestui studiu a fost evaluarea schimbarilor nivelului de peroxidare a lipidelor (concentratiile de malonilaldehida si 4-hidroxialchene: MDA si 4HNE), concentratia de glutation redus (GSH), precum si activitatea unor enzime antioxidante ca: glutation peroxidaza (GPX) si superoxid dismutaza (SOD) în ficatul sobolanilor intoxicati cu Cu si supusi efortului fizic. Rezultatele dovedesc faptul ca intoxicatia cu Cu si efortul unic, actionând simultan, intensifica în mod considerabil (într-o maniera cumulativa) stresul oxidativ în ficatul sobolanilor [15].

            Suplimentarea de Cu poate influenta direct capacitatea de efort fizic, prin stimularea activitatii sistemelor AO enzimatice - CuZnSOD - si prin cresterea semnificativa a ceruloplas-minei, indicatorul cel mai fidel al nivelului cupremiei. În mod indirect, prin influentarea neuromediatiei, prin dopamina si noradrenalina, Cu ar putea determina activarea simpatoadre-nala si modificarile consecutive adaptative ale organismului la efort [16].

Efectele favorabile ale administrarii de Cu asupra capacitatii de efort fizic la animale se produc prin influentarea metabolismului energetic muscular. Cercetarile sunt de acord cu unele date din literatura privind efectele Cu asupra activitatii motorii controlate la subiectii sedentari sau la sportivi. Lotul supus efortului caruia i-am administrat suplimente de Cu prezinta o crestere semnificativa a performantelor la proba de înot, ceea ce ne confirma rolul antioxidant al Cu în conditii de stres oxidativ. Însa administrarea în doze repetate de Cu va induce un efect prooxidant, dovada fiind scaderea capacitatii de efort dupa o luna de antrenament.

Rezultatele noastre aduc o dovada indirecta cu privire la efectele favorabile ale supli­mentarii de Cu, în raspunsul adaptativ al organismului la stresul oxidativ indus prin efort fizic. Administrarea suplimentelor de Cu determina modificari ale balantei oxidanti/antioxidanti: scaderi ale lipoperoxizilor postexpunere, simultan cu cresteri ale apararii antioxidative totale, dovada cresterile acidului uric si ale apararii antioxidative extracelulare, tradusa prin cresterea ceruloplasminei, pentru toate loturile. Modificarile ceruloplasminei - cresterile postexpunere la efort fizic fata de valorile initiale, la lotul care a primit suplimente de Cu, pledeaza pentru efectul protector al acestuia asupra apararii antioxidative extracelulare neenzimatice, prin ceruloplasmina.

Concluzii

1. Îmbunatatirea performantelor la proba de înot este asociata cu cresterea capacitatii an-tioxidative totale (cresterea acidului uric si ceruloplasminei) si scaderea stresului oxidativ (scaderea lipoperoxizilor).

2. Cercetarile efectuate demonstreaza efectul protector al Cu, ca procedeu fiziologic de marire a capacitatii de adaptare la stresul oxidativ, prin îmbunatatirea mecanismelor de aparare antioxidative.

3. Procedeul utilizat de noi pot fi încadrat între metodele sustinatoare de efort, utile pen-tru îmbunatatirea performantelor la sportivi.

75

 
Bibliografie

1. MÎRZA C.M., TACHE S.: Actualitati cu privire la rolul cuprului, zincului, manganului si litiului în organism. Sibiul Medical, 2000, XI/1, 18-22.

2. LUMINIŢA PLEsCA-MANEA, CUCUIANU M., CRÂSNIC I., BRUDAsCĂ I.: Biochimie clinica. Fundamentare fiziopatologica. Ed. Argonaut, Cluj-Napoca, 2003, 302-307.

3. MIHELE D.: Biochimie clinica. Metode de laborator, ed. a III-a, Ed. Medicala Bucuresti. 2007.

4. PACKER L.: Oxidative damage to proteins: spectrometric method for carbonyl assay. Methods Enzymol., 1994, 233:347-357.

5. SATOH K.: Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta, 1978, 90:37-43.

6. CHEESEMAN K.: Determination of aldehydic lipid peroxidation products: malonalde­hyde and 4-hydroxynonenal. Methods Enzymol., 1994, 186:406-13.

7. SEN C.K.:  Antioxidants in exercise nutrition. Sports Med., 2001, 31(13):891-908.

8. TACHE S. - Stresul oxidativ si antioxidantii în efortul fizic. În Dejica D. – Antioxidanti si terapie antioxidanta, Casa Cartii de stiinta, Cluj-Napoca, 2001, 6:198-210.

9. VASSILAKOPOULOS T., KARATZA M.H., KATSAOUNOU P. et al: Antioxidants attenuate the plasma cytokine response to exercise in humans. J. Appl. Physiol., 2003, 94:1025-1032.

10. CHEVION S., MORAN D.S., HELED Y., ET AL - Plasma antioxidant status and cell injury after severe physical exercise. PNAS, 2003, 100(9):5119-5123.

11. BAILEY D.M., YOUNG I.S., MCENENY J., ET AL - Regulation of free radical outflow an isolated muscle bed in exercising humans. Am J. Physiol. Heart Circ. Physiol, 2004, 287:H1689-H1699.

12. CÂRMACIU R. (sub red.) - Guyton. Fiziologie. ed. a 5-a, Ed. Med. Amaltea, Bucuresti, 1996, VIII/30:290-294; XIV/57:577-583.

13. GUYTON A.C., HALL J.E. - Textbook of medical physiology. 9th ed., Saunders & Comp., Philadelphia, 1996, VII, 42:542; VIII, 43:549-552.

14. TACHE S., DUMA E., DUMA L. - Antioxidantii si influenta asupra stresului oxidativ indus de efortul fizic. Palestrica Mileniului III, 2000, I/2:41-47.

15. PAWLAS M.G., TRACZ J., DZIĘGIEL J. - Induction of oxidative stress in livers of rats under influence of isolated and combined exposure to copper and physical effort,  Adv. Clin. Exp. Med., 2002; 11(4):457-466.

16. O'DELL B.L. - Roles of zinc and copper in the nervous system. Prog. Clin.Biol.Res., 1993, 380: 147-162.

Abstract

In the present study we intended to follow prooxidant and antioxidant effects of copper in animals subjected to physical exercise, which received an extra copper ratio. Researches have been conducted on 3 groups of 10 white Wistar rats: group I - animals that have made exercise for 4 weeks, through the swimming test, group II – animals which received copper, 2-dose weekly for 4 weeks, group III - animals which performed exercise and received copper. Venous blood from the retroorbitary sinus was collected in days 1, 15 and 29, in order to determine the antioxidant parameters (uric acid, ceruloplasmin) and the oxidative stress parameters (lipoperoxids - MDA related). The results have shown an increase of total antioxidant capacity (increased uric acid and ceruloplasmin) and reduced oxidative stress (decreased lipoperoxids). Researches showed that copper has a protective effect, which helps the organism to adapt to oxidative stress by improving antioxidative defence mechanisms.

Keywords: copper, physical exercise, antioxidants.


ENTEROSCOP CU BALON “EnteroPro” OLYMPUS

Noul sistem pentru investigarea si tratamentul afectiunilor intestinului subtire.

Pentru mai multe informatii despre acest nou sistem de videoendoscopie puteti vizita adresa de internet a firmei OLYMPUS:

http://www.olympus-europa.com/endoscopy

 

sau pe cea a reprezentantul exclusiv pentru    Romania:

TEHNO ELECTRO MEDICAL COMPANY

www.temco.ro

Persoana de contact:

Dr. Dragos Aldea

Line Manager Diagnostic

Tel. 0745 / 114 998


EVOLUŢIA INFECŢIILOR RESPIRATORII ACUTE sI A GRIPEI

ÎN SEZONUL 2009-2010 ÎN TERITORIUL

CENTRULUI REGIONAL DE SĂNĂTATE PUBLICĂ CLUJ

Mîrza Tudor Valentin1, Radu Rodica1, Mîrza Camelia Manuela2, Munteanu Cornelia1, Radu Rares Nicolae3

4.      Centrul Regional de Sanatate Publica Cluj

5.      U.M.F. „Iuliu Hatieganu” Cluj-Napoca

6.      student, U.M.F. „Iuliu Hatieganu” Cluj-Napoca

Rezumat

Supravegherea infectiilor respiratorii acute este esentiala pentru semnalarea debutului unei noi epidemii/pandemii, datele de morbiditate si mortalitate fiind necesare pentru a întelege impactul asupra sanatatii publice si a elabora strategii de supraveghere si control.

Daca în aprilie 2009 se înregistra un cumul de morbiditate si mortalitate prin influenza-like (Mexic), în iunie erau semnalate cazuri de gripa A(H1N1) pe toate continentele Lumii si OMS anunta necesitatea implementarii gradului 6 de alerta pandemica, declarând pandemica raspândirea infectiei cu noul tip  de virus A(H1N1).

În teritoriul CRSP Cluj primele cazuri de gripa cu virus nou au fost diagnosticate în luna iulie 2009. Initial cazurile diagnosticate au fost de import, dar în toamna au aparut cazuri secundare, numarul lor crescând, odata cu începerea anului scolar.

Cuvinte cheie: supraveghere, infectii respiratorii acute, gripa A(H1N1), pandemie.

Introducere

Supravegherea infectiilor respiratorii acute (IACRS) este esentiala pentru identificarea unor infectii cu noi virusuri gripale A, care ar putea semnala debutul unei pandemii. Date despre mortalitate si morbiditate sunt necesare pentru a întelege mai bine impactul IACRS asupra sanatatii populatiei si a stabili strategii de supraveghere si control. Dupa identificarea primelor doua cazuri de infectie cu noul virus gripal A(H1N1) în SUA, pe 15.04.2009, CDC a cerut tuturor departamentelor de sanatate locale si de stat sa implementeze o supraveghere sporita pentru toate virusurile gripale A carora nu li se poate stabili subtipul. În 25.04.2009, directorul general OMS declara stare de urgenta de sanatate publica de importanta internationala în urma aparitiei de cazuri umane de infectie cu virus gripal A(H1N1) în SUA si Mexic. În 27.04.2009 s-a decis mentinerea sistemului de supraveghere pentru gripa si infectii respiratorii în România. În 30.04.2009 a avut loc întâlnirea Ministrilor Sanatatii din UE, unde s-a stabilit necesitatea implementarii sistemului de raportare zilnica în tarile membre.

Clinicians, epidemiologists and virologists in the 53 countries in the WHO European Region constitute the network reporting to EuroFlu.

Scop

Supravegherea are drept scop cunoasterea raspândirii geografice a activitatii gripale, a intensitatii bolilor acute respiratorii în populatie, a tendintei bolilor respiratorii, stabilirea anuala a continutului de vaccin datorita cunoasterii circulatiei virusurilor si raspunsul la pandemia (H1N1) 2009.

Metode

Clinicienii, medicii de familie, epidemiologii si virusologi din teritoriul CRSP Cluj constituie reteaua de raportare catre CNCSBT Bucuresti. The laboratory network consists of WHO-recognized national influenza centres, a WHO collaborating centre for reference and research on influenza and two WHO H5 reference laboratories. Laboratorul recunoscut ca centru de gripa la  nivel national este cel din Institutul Cantacuzino, Bucuresti, un centru de colaborare cu OMS si ECDC, pentru referinta si de cercetare cu privire la gripa. Acesta a prelucrat secretiile nazofaringiene prelevate de la persoanele cu suspiciune de gripa A(WHO/Europe publishes a weekly surveillance report in English and Russian, which is based on data covering the Region's total population of 883 million./H1N1) 2009.

Rezultate si discutii

Începând  cu saptamâna 40 a anului trecut (28.09.- 04.10.2009) s-au înregistrat cresteri ale numarului de îmbolnaviri prin IACRS, mai ales la grupa de vârsta 0-4 ani si 5-14 ani dar acestea sunt sub nivelul maxim sezonier, în teritoriul CRSP Cluj.

            Rata incidentei prin IACRS la nivel regional a fost de 343,99o/oooo. Judetele în care se înregistreaza o rata de incidenta crescuta fata de media regionala sunt Covasna, Salaj si Bistrita.

Rata de incidenta prin gripa creste de la 0o/oooo în saptamâna 40 de supraveghere la  1,48o/oooo în saptamâna 02 (11.01.-17.01.2010) de supraveghere. Judetele în care se înregistreaza o rata de incidenta crescuta fata de media pe teritoriu CRSP Cluj sunt Cluj, Mures si Sibiu.

Din analiza stratificata pe grupe de vârsta se constata ca ratele de incidenta cele mai crescute atât pentru IACRS cât si pentru gripa se înregistreaza la grupa de vârsta 0-4 ani.

Astfel, la grupa 0-4 ani, rata de incidenta prin IACRS creste de la 2109,09o/oooo în saptamâna 40  la 3191,50o/oooo în saptamâna 45 (02.11.- 08.11.2009) dupa care scade la 1172,13 în saptamâna 53 (28.12.2009-03.01.2010). La aceeasi grupa de vârsta, rata de incidenta prin gripa creste de la 0o/oooo în saptamâna 2,87o/oooo în saptamânile 51 (14.12.-20.12.2009) si 52 (21.12.-27.12.2009) dupa care scade pâna la 0.41o/oooo în saptamâna 02 (11.01.-17.01.2010).

La grupa 5-14 ani, rata de incidenta prin IACRS atinge un maxim de 2309,39o/oooo în saptamâna 50 (07.12.-13.12.2009) iar rata de incidenta prin gripa creste de la 0 la 4,32o/oooo în saptamâna 48 (23.11.-29.11.2009). La grupa 15-29 ani, rata de incidenta prin IACRS creste de la 326,08o/oooo la 773,86o/oooo în saptamâna 47 (16.11.-22.11.2009) iar rata de incidenta prin gripa atinge un maxim de 4,49o/oooo în saptamâna 48 (23.11.-29.11.2009). La grupa de 30-64 ani, valorile maxime de incidenta sunt de 273,44o/oooo pentru IACRS în saptamâna 50 (07.12.-13.12.2009) si de 2,39o/oooo  pentru gripa în saptamâna 51 (14.12.-20.12.2009). În fine, peste 65 de ani, incidentele maxime sunt atinse în saptamâna 46 (09.11-15.11.2009) pentru IACRS (161,48o/oooo) si saptamânile 50 (07.12.-13.12.2009), 53 (28.12.2009-03.01.2010) si 02 (11.01.-17.01.2010) pentru gripa (0,46o/oooo).

Având în vedere ca grupa de vârsta 0-4 ani pare sa fie în continuare cea mai afectata, prezentam mai jos distributia geografica a ratelor de incidenta prin IACRS si gripa.

Fig. 1. Incidenta IACRS si a gripei la grupa de vârsta 0-4 ani, în 11 judete din Transilvania, în perioada 28.09.2009 – 24.01.2010

Având în vedere ca perioada analizata cuprinde vacantele de sarbatori, cresterea incidentei din ultima vreme poate fi datorata revenirii la raportari complete.

În cursul anului 2009 s-au înregistrat 15 decese prin gripa în cele 11 judete arondate CRSP Cluj: 5 cazuri în judetul Cluj, 2 cazuri  în judetul Bihor, 2 cazuri în judetul Alba, 3 cazuri în judetul Mures, 1 caz în judetul Sibiu si 2 cazuri în judetul Maramures. Au fost raportate si 5 decese prin IACRS, toate înregistrate în judetul Cluj.

În anul 2009 s-au înregistrat si 25 decese prin pneumonii, repartizate astfel: 6 cazuri în judetul Bihor, 7 decese în judetul Maramures, 3 decese în judetul Salaj, 3 decese în judetul Bistrita-Nasaud, 2 decese în judetul Mures, si câte 1 deces în judetele Cluj, Alba si Satu Mare.

În anul 2009 s-au înregistrat 678 cazuri clinice de gripa sezoniera, din care au fost internate 486 cazuri, numarul cel mai mare de cazuri fiind diagnosticate în cele 3 centre universitare medicale: Cluj (204 cazuri),  Sibiu (146 cazuri) si Mures (137 cazuri).

Tabel 1. Cazuri clinice de gripa în anul 2009, în 11 judete din Transilvania

Judet

Cazuri clinice de gripa

Din care internate

AB

66

33

BH

64

48

BN

17

6

CJ

204

159

CV

2

2

HR

2

2

MM

31

16

MS

137

97

SM

2

0

SJ

7

4

SB

146

119

Total

678

486

Judetele participante la supravegherea infectiilor respiratorii în sistem santinela, în teritoriul nostru sunt: Bihor, Cluj, Maramures, Mures si Sibiu. În cadrul sistemului santinela de supraveghere a infectiilor respiratorii, numarul solicitarilor  la Serviciul de ambulanta înregistrate în cele 5 judete, a fost de 50662 în trimestrul IV al anului, mai mic decât în trimestrul III al aceluiasi an. Cel mai mare numar de solicitari la ambulanta s-a înregistrat la grupa de vârsta 0-4 ani, pentru IACRS si la grupa de vârsta >65 ani pentru pneumonii.

În luna iulie 2009, au fost diagnosticate primele cazuri de gripa cu virus nou în teritoriul CRSP Cluj. Initial cazurile diagnosticate au fost de import, pentru ca din toamna sa apara cazuri secundare si numarul lor sa creasca vertiginos, odata cu începerea anului scolar. Pâna în prezent în teritoriul nostru au fost înregistrate 684 cazuri de gripa cu tipul A(H1N1). Din total, 582 de cazuri au fost confirmate prin analize de laborator iar restul de 102 au fost confirmate clinic si prin link epidemiologic.

Tabel 2. Repartitia cazurilor de gripa cu virus nou în teritoriul CRSP Cluj

Judet

Caz confirmat cu laboratorul

Caz confirmat clinic

Total

AB

54

14

68

BH

17

3

20

BN

1

0

1

CJ

145

40

185

CV

21

5

26

HR

79

23

102

MM

22

4

16

MS

116

10

132

SM

1

0

1

SJ

4

3

7

SB

112

4

116

Toate cazurile au fost simptomatice, simptomele predominante fiind: febra, debutul brusc, astenia, tusee, rinoreea, mialgiile, curbatura. Toate cazurile internate au fost tratate cu Oseltamivir, durata tratamentului fiind în general de 7 zile. Cazurile izolate la domiciliu au primit antitermice, simptomatice, conform recomandarilor Ministerului Sanatatii.

De la începutul sezonului de supraveghere pentru gripa 2009-2010 si pâna în prezent Centrul de referinta pentru gripa de la Institutul Cantacuzino Bucuresti a izolat 571 tulpini de virus gripal nou. Pe lânga faptul ca virusurile au suferit mutatii, datorita carora pot apare forme foarte grave de infectii ale cailor respiratorii si complicatii, conditiile meteorologice si temperaturile schimbatoare, au constituit un factor agravant al acestor probleme de sanatate.

Statistic vorbind, mortalitatea în aceasta pandemie este mai mica decât în celelalte pandemii ale secolului XX (1, 3), dar impactul populational mai scazut nu justifica inactivitatea sanatatii publice (2).

Concluzii

1. Gripa sezoniera, care a beneficiat de o acoperire vaccinala larga atât în 2008 cât si în 2009 a crescut semnificativ în teritoriul arondat CRSP Cluj (678) cu un numar mai mare de cazuri înregistrate în judetele cu clinici medicale universitare.

2. Din luna iulie 2009, au fost diagnosticate primele cazuri de gripa cu virus nou, în teritoriul CRSP Cluj, initial cazurile fiind de import, pentru ca din toamna sa apara cazuri secundare si numarul lor sa creasca, odata cu începerea anului scolar.

3. Pâna în prezent în teritoriul nostru au fost înregistrate 684 cazuri de gripa cu tipul A(H1N1), confirmate cu laboratorul sau clinic si prin link epidemiologic.

4. Datele de morbiditate si mortalitate sustin necesitatea vaccinarii grupelor la risc.

Bibliografie

1. European Centre for Disease Prevention and Control: ECDC documentation on previous pandemics. http://ecdc.europa.eu/en/healthtopics/Pages/Pandemic_Influenza.aspx

2. HALL I.M. et al.: Real-time epidemic forecasting for pandemic influenza. Epidemiol. Infect., 2007, 135(3): 372-85.

3. KILBOURNE E.D.: Influenza pandemics of the 20th century. Emerg. Infect. Dis, 2006, 12(1): 9-14.

Abstract

Surveillance of acute respiratory infections is essential for signalling the beginning of a new epidemic/pandemic, the morbidity and mortality data being necessary in order to understand the impact on public health and to develop strategies for monitoring and control.

If in April 2009 an accumulation of influenza-like morbidity and mortality was recorded in Mexico, in June cases of A(H1N1) influenza were reported all around the world and WHO announced the need to implement the pandemic alert level 6, and declared pandemic the spread of the infection with the new type of A(H1N1) virus.

In the CRSP Cluj territory, the first cases of A(H1N1) influenza were newly diagnosed in July 2009. Initially the diagnosed cases were imported, but secondary cases occurred in autumn, their number increasing with the start of the school year.

Keywords: surveillance, acute respiratory infections, A(H1N1) influenza, pandemics.

CT Cone beam maxilo facial ORION- VOLUX , produs de Ritter Imaging Germania in colaborare cu GENORAY – Coreea de Sud

Echipament destinat studiului complex, din multiple incidente si cu reconstructie 3D a masivului facial.

Campul de achizitie de:

           (8.5cm x 8.5cm) - high resolution

           (5.6cm x 5.6cm) - extra high resolution

Permite studii pentru implantologie, sinusuri, ATM.

Include  in standard software gestiune Lynx 3D, cu prezetare integrata a Rx panoramic standard, sectiuni verticale si orizontale la nivelul ales, reconstructie 3D.

Programul permite planificare completa a implantului , fara necesitatea unui software aditional, cu managementul canalului mandibular si planseului.

Logo                                                                                                                                                   

               

           

            Informatii rapide :   Tibi Poraczky    0744 60 69 44   tporaczky@temco.ro

                                         Mircea Puia      0745 34 80 34   mpuia@temco.ro


Cluj-Napoca District University Hospital

Manager dr. Cristian Ciortea

Cluj District University Hospital is a traditional medical institution, with national and international recognition.

Cluj District University Hospital is the biggest hospital facility in Romania and has a complex structure, with 1592 beds in almost all medical and surgical specialties, specialized laboratories, Emergency Unit, complex Ambulatory Care structure, Mental Health Center, Dental Care structures, Family Planning structures, Infection Disease department, and other specialized departments.

The hospital functions in more than 25 buildings and has more than 3000 employees.

The activity of the hospital is structured on three important domains: medical assistance, medical university education and medical scientific research.

The medical personnel consist of medical professionals with high professional background, national and international recognized for their performance.

The beneficiaries of the services offered by the hospital are the patients from the North Western Region of Romania, through the emergency, preventive and therapeutically services performed, and also the students and all the medical staff which attend the educational courses organized in the hospital.

The development strategy of the hospital comprises all the three main activity domains, together with the strategy for an efficient organizational management, focused on raising accessibility for medical services, quality management, communication, satisfaction of patients and staff, correlation of the need for medical services with the hospital offer of services.

The mission of the hospital is:

1. Satisfying of patients needs, by providing medical services respecting basic principles: quality, cost control, patient and staff satisfaction, access to medical services.

2. Organizing the institutional frame for progress in medical knowledge.

            The values promoted by Cluj District University Hospital are:

1. Universality: all community members have access to essential health services, with reasonable costs.

2. High quality medical services.

3. Cost-efficient medical services, based on needs and results.

4. Respect for personal dignity (patients and staff).

5. Solid system of data, used in rational strategic planning and decision making.

6. Integrated model for providing medical services.

7. Accent on long term strategies regarding medical assistance, medical education and medical scientific research. The vision of Cluj District University Hospital is: “To excellencies, through competence, professionalism and dedication, for people interest”.



Dermato-Venerealogy Clinic

 

Ophthalmology Clinic

 


                                                                      DONGWU OPTICAL INSTRUMENT                  

                                 

     

                                                           

                                              

                  UV 100                          UV 801                          Autorefractokerato -  metru   

            TIBOR PORACZKY   0744606944                               RMK 200

            



 No.46-Janvier 2010                                                Report of the IX Workshop

Willem J. Mulder                                                          Cluj-Napoca, ROMANIA

[With input from Ramunas Kondratas]

The IX Workshop of the Association was held in Cluj-Napoca in Romania from 2 till 6 September. The main host was the TEMCO Company of our member Prof. Dr Pompiliu Manea.

The official opening took place in the very beautiful Museum of Ethnography of Transylvania (thanks to Mrs. Prof. Simona Munteanu, the director) and was attended by the President of the Romanian Academy Acad. Ionel Haiduc, who specially came over from Bucharest and the Prefect of the city of Cluj-Napoca, Prof. Dr. Florin Stamatian. Also present were the Presidents Prof.dr Marius Bojița and Prof.dr. Radu Munteanu of the Medical and Technical University, both of Cluj-Napoca and also Prof.dr. Alexandre Herlea from the Université de Technologie de Belfort-Montbéliard, specialist in the history of science and technology. The attendance of those officials proves that the Romanian scientific and museum society searches for affiliation with the western museum world.

The scientific program was divided into three main themes: Radiology, Dermatology, and Ophthalmology collections.

Dr. Manea, being an expert himself in the field of radiology, owns a spectacular collection of radiology tubes - from several very early ones to more recent examples. He also has a vast collection of electro-physiotherapy apparatuses. Both collections are now in the newly opened, section of the National History Museum of Transylvania - the History Museum of Pharmacy, Medicine, and Medical Equipment. Extensive reports/illustrated talks were given about these collections and a visit to this very nice museum was part of the program. The pharmacy collection is extraordinary and spectacular. The medical collection is just beginning to grow with 20th century instrumentation.

A visit to the dermatology cast collection of the Derma-Venereal Clinic of the Pharmacy and Medicine “Iuliu Hațieganu” University was also a part of our program. Prof. Dr. Alexandru Tataru gave a wonderful overview of the history of Romanian dermatology and demonstrated a splendid collection of moulages, photos, aquarelles, and books.

Prof. Dr. Cristian Bârsu, a medical historian, presented an illustrated history of the Medical University of Cluj-Napoca, especially explaining the importance of a great number of famous professors.

Willem Mulder followed, and in the spirit of the workshop, presented a practical museum application – a draft form (template) that could be used to describe and catalogue old medical photographs, such as those in the Utrecht University collection.

Our well-known colleague and long-time member of EAMHMS, Mrs. Dr. Eva Crișan, presented a very interesting overview of the ophthalmology collection in the Ophthalmology Clinic of the Pharmacy and Medicine “Iuliu Hațieganu” University and its history.

We also had an opportunity to visit that collection and meet Assoc.prof. Simona Talu, one of its caretakers. The housing of this collection is still poor and some advice was given to improve the conditions and care. Unfortunately, there was not enough time to do any practical work on the collections as such. In future workshops we, again, hope to return to our earlier practices and pay more attention to this aspect.

A “who knows what” question was presented by the Lithuanian delegation from the Lithuanian Museum of the History of Medicine and Pharmacy in Kaunas. This concerned some special electro-physiotherapy instruments in their collections that they had very little information about.

The experts in the audience were able to provide them with important information and further leads.

In order to clear our heads, a visit was organized to the very beautiful Botanical Garden of Cluj-Napoca. On top of that we had 2 post- workshop excursions: one to Sighisoara, a charming old walled-city on top of a hill, with a small pharmacy and medical collection in the Clock Tower Museum and a building marked as the birthplace of Dracula; and the other, on the last day of the workshop, to Romania’s most extensive Hydro-Power Station.

The workshop was attended by 17 participants outside of Romania, (Estonia, Russia, Sweden, Lithuania, USA, Netherlands), and another 12 local people. We regret that due to the world financial crisis, several colleagues had to cancel their participation and we hope this will change in the future, since we decided to continue these workshops. It is not clear yet which country and institution will host us next. In any case, it was very useful and nice to see old colleagues, meet new ones, and to discuss the very real and actual problems/issues facing medical museums, and museums in general, today.

All participants want to thank the European Association of Museums of the History of Medical Sciences for their kind support. Obviously, we also wish to thank our host Dr. Pompiliu Manea and TEMCO for their generosity and hospitality.




♦ Rapport du IXe Workshop à Cluj-Napoca, Roumanie


Le IXe Workshop de l’association s’est tenu à Cluj-Napoca, Roumanie, du 2 au 6 septembre 2009. Notre hôte principal était la société TEMCO, dont le directeur est un de nos membres, le Dr Pompiliu Manea.

La cérémonie d’ouverture a eu lieu dans le très beau Musée d’Ethnographie de Transylvanie (nous remercions le Pr Simona Munteanu, son directeur), à laquelle ont assisté le président de l’Académie Roumaine, Ionel Haiduc, , qui est venu spécialement de Bucarest, et le préfet de Cluj-Napoca, le Dr Florin Stamatian. Etaient présents aussi les Prs Marius Bojita et Radu Munteanu de l’université de Technologie et Médicine, de Cluj-Napoca, ainsi que le Pr Alexandre Herlea de l’université de Technologie de Belfort – Montbéliard, spécialisé dans l’histoire des sciences et de la technologie. La présence de ces personnalités montre que le monde scientifique et les musées de Roumanie recherchent des contacts avec le monde des musées de l’Ouest. Le programme scientifique était divisé en trois thèmes principaux: collections de radiologie, dermatologie et ophtalmologie. Le Dr Manea, lui-même expert dans le domaine de la radiologie, possède une collection spectaculaire de tubes de radiologie – des plus anciennes aux plus récentes. Il a également une grande collection d’appareils d’électro-physiothérapie. Les deux collections se trouvent désormais dans la section «musée d’histoire de la pharmacie, de la médicine et de l’équipement médical» récemment ouverte au Musée national de l’histoire de la Transylvanie. Des rapports approfondis et des conférences ont été donnés autour de ces agréable musée faisait partie du programme. La collection de pharmacie est extraordinaire et spectaculaire. La collection médicale s’enrichit d’instruments du XXe siècle. Il y eut aussi une visite de la collection appartenant à la clinique de dermato-vénérologie de l’université du pharmacie et médicine «Iuliu Hatieganu». Le Pr Alexandru Tataru a fait un résumé magistral de l’histoire de la dermatologie en Roumanie et montré une collection splendide de moulages, photos, aquarelles et ouvrages. Le Pr Christian Barsu, historien de la médecine, a présenté une histoire illustrée de l’université de médicine de Cluj-Napoca, expliquant plus particulièrement l’importance d’un grand nombre de professeurs éminents.

Willem Mulder a ensuite présenté, dans l’esprit du workshop, une application pratique – un formulaire (template) qui pourrait être utilisé pour décrire et cataloguer de vieilles photographies médicales, comme celles de la collection de l’université d’Utrecht. Notre collègue bien connue et depuis longtemps membre de l’AEMHSM, Mme Eva Crisan, a présenté la collection de la clinique d’ophtalmologie de l’université de pharmacie et de médecine «Iuliu Hatieganu» et son histoire.

Nous avons également eu l’occasion de visiter cette collection et de rencontrer une des personnes responsables, le Pr Simona Talu. Les conditions de conservation de cette collection sont encore pauvres et des conseils ont été prodigues pour les améliorer. Malheureusement il n’y a pas eu le temps de faire des travaux pratiques. Lors de futurs workshops nous espérons renouer avec nos anciennes habitudes et être plus attentifs à cet aspect. Une question «qui sait quoi?» était organisée par la délégation lituanienne du musée d’histoire de la médecine et de la pharmacie de Kaunas. Cela concernait des instruments d’électro-physiothérapie de leurs collections pour lesquels ils avaient très peu d’informations. Les experts dans le public ont ainsi pu leur donner des informations précieuses et d’autres pistes. Dans le but de nous aérer l’esprit une visite au très joli jardin botanique de Cluj-Napoca était organisée. La cerise sur le gâteau était les deux excursions après le workshop: une à Sighisoara pour voir la petite collection de médecine et de pharmacie de musée de la Tour de l’Horloge et un bâtiment présenté comme le lieu de naissance de Dracula; la deuxième à la plus puissante station hydroélectrique de Roumanie.

Les participants venant d’autres pays que la Roumanie étaient au nombre de dix-sept (Estonie, Russie, Suède, Lituanie, États-Unis, Pays-Bas) et les participants roumains douze. Nous regrettons qu’en raison de la crise financière plusieurs collègues aient dû annuler leur participation et nous espérons que cela changera à l’avenir, puisque nous avons décidé de continuer ces workshops. Il n’est pas encore établi qui accueillera le prochain. Il était de toute façon utile et agréable de revoir d’anciens collègues et de discuter de problèmes concrets et actuels que rencontrent aujourd’hui les musées en général. Tous les participants remercient l’AEMHSM pour son soutien. Naturellement nous souhaitons aussi remercier notre hôte Dr. Pompiliu Manea et TEMCO pour leur générosité et leur hospitalité.

Le 10 septembre 2009

Willem J. Mulder, coordinateur

Avec l’aimable participation de Ramunas Kondratas

September in Cluj, we did a workshop now professor Pompiliu

In Romania we’re singing loud professor Pompiliu

            About medical

            About technical

About historical

About pharmaceutical

About things most beautiful

And the honor we gave to you

In two days time we heard you speak professor Pompiliu

These two full day’s we learned a lot professor Pompiliu

            About radiology 

About dermatology

Electro-physiotherapy

And ophthalmology

About medical history

And it’s old technology

Also Romanian history

And the people of Transylvania

The workshop ends tonight, you know professor Pompiliu

Tomorrow we are in a turistical show professor Pompiliu

Thanks to Roxana

Thanks to Temco

Thanks to all your people

So kind and professional

Thanks for all we have got from you

The good wine and palinka too

 

Thanks for all we have got from you

The good wine and palinka too

William Mulder – together with all the Workshop participants


    LE CENTENAIRE DE LA PREMIÈRE PUBLICATION SUR LA

DIFRACTION DES RAYONS X

HORIA COLAN

Membre correspondent de l’ Académie Roumaine

La découverte de la diffraction des rayons X a travers les cristaux et son Application on cristallographie a fait époque pour la science des matériaux; elle est a la

Base de l’analyse diffractométrique, avec de multiples applications dans la caractérisation des matériaux: détermination des paramètres cristallins, microanalyse chimique, détermination de la taille des grains, des textures et des tensions, etc. [1].

En 1912, Max von Laue a eu l’intuition de considérer que les équidistances Entre les plans réticulaires ont le même ordre de grandeur que la longueur d’onde des Rayons X et a utilisé les cristaux comme des réseaux de diffraction en remplaçant les réseaux optique a paramètre plus grand. Ensuite, en 1913, les deux Bragg ont démontré Que les spectres formes s’expliquent de manière satisfaisante par l’hypothèse d’une réflexion sur les plans atomiques des cristaux, en établissant la loi qui porte leur nom.

W.Friedrich et P. Knipping ont réalisé expérimentalement l’idée de Laue et ont Obtenu sur plaque photographique l’image d’interférence des radiations. Les maximums d’interférence obtenus ressemblaient parfaitement à ceux des radiations lumineuses, Confirmant de la sorte l’hypothèse de la nature ondulatoire des rayons X.

Pour cette découverte, il a été attribue a Laue le prix Nobel de physique en 1914. P.Debye et P.Scherrer ont développé la méthode (méthode des poudres) en utilisant un agrégat polycristallin a la place d’un monocristal.

MAX VON LAUE ET L’ISTOIRE DE LA DECOUVERTE

DE LA DIFFRACTION DES RAYONS X

Dans son livre Geschichte der Physique (1947), Max von Laue présente aussi les Principaux moments de la découverte et de l’application de la diffraction des rayon X. [2]. Les qualités du texte, la valeur et la profondeur des idées, le brillant exposé sont autant de raisons pour laisser en bonne partie parler Laue.

Francesco Maria Grimaldi (1618-1663) a fait les premières observations dans le domaine de l’interférence et de la diffraction de la lumière. Il a tenu a vérifier expérimentalement l’idée d’origine vaguement empirique que la lumière se propage selon Toutes les règles de la géométrie et, a sa grande surprise, il découvre le phénomène de la diffraction qui le conduit plus loin a l’hypothèse que la lumière pourrait être de nature ondulatoire.

Au début du XIX siècle (1821), Joseph v. Fraunhoffer (1784 – 1826) a découvert la diffraction à travers les réseaux.

Friedrich Magnus Schwerd (1792 – 1871) a donne une interprétation ondulatoire  du phénomène (1835) dans son ouvrage Die Beugungserscheinungen aus den Fundamentalgesetzen der Ondulationstheorie analytisch entwickelt (Les phénomènes de diffraction déduits analytiquement des lois fondamentales de la théorie ondulatoire). Laue montre que l’idée d’interférence « est des lors une des conquêtes les plus précieuses de la physique. Toutes les fois que nous sommes en présence d’une radiation de nature inconnue, nous essayons de produire des interférences; si nous y parvenons, son caractère ondulatoire est démonté» (p. 51)

En novembre 1859, «la connaissance du spectre de la lumière s’est considérablement amplifiée par la découverte de Wilhelm Conrad Röntgen (1845 – 1923) qui a fait époque» et pour laquelle il lui a été décerné, en 1901, le premier prix Nobel de physique.

L’année suivante, des chercheurs comme E. Wiechert et G. Stokes ont considéré que les rayons X sont une radiation lumineuse à très courte longueur d’onde, mais la plupart continuaient d’être convaincus que les rayons X sont corpusculaires. La confirmation complète du point de vue des premiers n’est survenue qu’en 1912 par les expériences d’interférence réalisées par Walter Friedrich et Paul Knipping sur les réseaux atomiques spatiaux des cristaux. Les expériences ont constitue la victoire de l’hypothèse plus ancienne des réseaux spatiaux des cristaux et de l’hypothèse énoncée par Max von Laue (1879 – 1960), en prouvant l’interférence des rayons X passes a travers le réseau cristallin.

«Dans ces expériences il a été trouve aussi la première preuve décisive de la nature ondulatoire des rayons Röntgen, que jusqu'à ce moment-la d’importants chercheurs avaient niée en raison des phénomènes quantiques très prononcés qu’ils présentent. La théorie de ces phénomènes, donnée par Laue des la première publication sur ce thème et confirmée quantitativement, est une petite généralisation de celle obtenue en 1835 par Schwerd pour les réseaux optiques. Elle a été pour peu de temps seulement mise en doute par certains d’entre eux» (p. 168)

Puisque jusque là les paramètres du réseau pouvaient être estimes approximativement seulement comme ordre de grandeur, la détermination de la longueur d’onde était impossible. On ignorait combien d’atomes contient chaque cellule du réseau spatial. En 1913, William Henry Bragg (1862 – 1942) et son fils William Lawrence Bragg (1890 – 1971) utilisent l’hypothèse formulée par William Barlow (1845 – 1934) en 1898 sur la structure du NaCl, basée sur l’idée de l’entassement le plus dense des sphères. Au moyen des intensités des maximums d’interférence, ils ont confirme cette structure, ont établi la constante du réseau et a partir de celle-ci la longueur d’onde des rayons X et ensuite ils ont pu déterminer grâce a cette dernière les constantes des réseaux des autres cristaux. De la sorte, un an après Laue, il leur a également été décerne le prix Nobel en 1915.

Pour des métaux comme Al, Cu, Mg on a confirmé la disposition des atomes dans l’entassement le plus compact de sphères (cellule cubique à faces centrées ou cellule hexagonale compacte), conformément à celui prévu en 1611 dans un écrit de Kepler.

La détermination des longueurs d’onde a constitue la base de la spectroscopie à rayons X (les radiations caractéristiques K, L, M,…), crée à partir des travaux des deux Bragg, de H.G.I. Moseley, etc.

A l’aide des rayons il a été mis en évidence que, le plus souvent l’état cristallin ne résulte pas en cristaux uniques à faces géométriques mais par une structure microscopique formée de grains a surface irrégulière disposes de façon aléatoire. A juste raison, Laute dit : «C’est pourquoi toute la théorie atomique du corps solide, par exemple la théorie quantique de la conductivité électrique, a pour point de départ le réseau spatial» (p. 170)

Mais Max von Laue présente le mieux l’historique de sa grande découverte dans son ouvrage autobiographique «Mon chemin dans la physique», paru dans le livre de Hans Hartmann Schöpfer des neuen Weltbildes (Créateur de la nouvelle image du monde) [3].

Comme étudiant, arrivant de Göttingen, Laue a effectue à l’Université de Munich des travaux pratiques diriges par Röntgen ; ensuite, à Berlin, il a fréquente le cours d’optique théorique de Max Planck, a passe son doctorat en 1903 et est devenu à partir de 1905 assistant de Planck.

En 1909 il est revenu à l’Université de Munich, où aux côtés de Röntgen travaillant Arnold Sommerfeld (1868 – 1951) qui avait occupé la chaire devenue vacante de Boltzmann. Sommerfeld soutenait la nature ondulatoire des rayons X, «en contredisant la théorie corpusculaire que W.H. Bragg soutenait énergiquement en Angleterre» (p. 217). En appliquant la théorie de la diffraction, il a réussi à obtenir la valeur moyenne de la longueur d’onde (1912).

Même Röntgen, «après les expériences de Friedrich et Knipping, a longtemps refuse catégoriquement de reconnaître l’explication de l’interférence». (p. 218)

En février 1912, P. Ewald a demande à Laue son opinion concernant le comportement des ondes lumineuses dans un réseau spatial d’atomes polarisés.

«Pendant la discussion du problème, il m’est soudain venu l’idée qu’il fallait tenté de passer à travers les cristaux des ondes plus courtes, à savoir des rayons Röntgen. Si les atomes forment effectivement des réseaux spatiaux, alors il doit se produire des phénomènes d’interférence similaires à l’interférence de la lumière dans les réseaux optiques. » (p. 220)

Friedrich, assistant de Sommerfeld, a décidé d’effectuer des recherches a se sujet bien que «Sommerfeld ne s’attendit a rien de la part de cette idée». Conjointement avec Knipping qui préparait son doctorat à Röntgen, ils ont démarré les expérimentations au printemps de l’année 1912. Ils sont arrives au résultat que «le photogramme de la radiation d’un morceau de sulfate de cuivre présentait en dehors du rayon Röntgen initial, l’anneau du spectre de diffraction du réseau», confirmant l’idée de Laue et sa théorie de la diffraction dans les réseaux optiques.

«Le 8 juin 1912, j’ai communiqué cette découverte dans une réunion de la Société Allemande de Physique, a l’Institut de physique de l’Université de Berlin, au même endroit où, en décembre 1900, Planck avait parlé pour la première fois de la loi de la radiation et de la théorie des quanta» (p. 222).

Et, plus loin (p. 223)

«L’histoire de la découverte de l’interférence des rayons Röntgen illustre clairement la valeur de l’hypothèse dans la science…C’est exclusivement l’hypothèse du réseau spatial du cristal qui a suggère l’idée de la nécessité d’entamer des recherches sur ces rayons».

Dans son discours d’ouverture du Congres des Physiciens, à Würzburg, le 18 septembre 1933, Laue disait (p.231) :

«Si nous nous réunissons demain à l’Institut de physique de l’Université actuelle, nous nous trouverons dans un lieu historique. A la fin de l’année 1895, Wilhelm Conrad Röntgen a découvert dans cet édifice les rayons qui portent son nom».

DUMITRU BUNGEŢIANU ET LA DIFFRACTION DES RAYONS X

Le nom de Dumitru Bungetianu (1860 – 1932), professeur de physique à l’Université de Bucarest, est lié aussi à cet événement décisif de l’histoire de la science des matériaux : la découverte de la diffraction des rayons X déjà en 1896, immédiatement après leur découverte par Röntgen et 16 ans avant les travaux de Max von Laune.

La priorité concernant l’idée de l’interférence des radiations Röntgen, exprimée avec une conviction inébranlable, appartient à Bungetianu. Les résultats des expériences et ses conclusions ont été publies dans le revue L’Eclairage électrique, tome VII du 25 avril 1896, no 17, pp. 165 – 167 [4], [5]. Le titre de l’article est sifnificatif : La diffraction des rayons X. Le Directeur scientifique de la revue J. Blondin présente ainsi la lettre de Bungetianu :

«Les nombreuses tentatives faites jusqu’ici pour rechercher si les rayons X peuvent interférer n’ont donne que des résultats négatifs. M. Bungetziano, Professeur de physique a l’Université de Bucarest, nous communique a ce sujet la lettre suivante. A cause de l’importance des résultats qu’elle relate, nous avons cru devoir publier immédiatement cette lettre, sans nous dissimuler toutefois que sec résultats sont sujets a critique et auraient besoin d’être confirmes avant d’être admis sans restriction».

Bungetianu commence sa lettre par une affirmation catégorique :

«Je vous adresse quelques photographies qui prouvent bien que les rayons X peuvent interférer par diffraction».

Ensuite sont présentées les expériences effectuées, les résultats obtenus concrétises dans trois photographies du phénomène ainsi que leur interprétation et les conclusions. Quelques citations :

«…cette ombre est entourée de deux franges circulaires dues à la diffraction des rayons invisibles».

             «Les franges d’interférence, que montre la photographie n° 3, sont produites avec une régularité qui rappelle les phénomènes analogues de la lumière ordinaire».

             «De tout ceci, il ressort clairement que les rayons X, ou du moins une catégorie de ces rayons, possèdent la propriété d’interférer par diffraction.

             Ce fait a, comme on le devine, une importance scientifique indiscutable ; d’abord l’hypothèse de la propagation de ces rayons par deux ou bombardement moléculaire se trouve réduite a néant ; ensuite la périodicité de la vibration de cette radiation s’affirme sans conteste ; finalement la possibilité de mesurer la longueur d’onde de ce mouvement vibratoire apparaît plus proche. Je regrette pour ma part que l’insuffisance de mes moyens de recherches ne m’aient pas permis d’entreprendre cette  mesure de longueur d’onde, bien que je fusse en possession du phénomène depuis quelques semaines».

            Sans tenir compte de la valeur des résultats expérimentaux, le fait important est que Bungetianu a été un des premiers chercheurs qui a soutenu l’idée de la nature ondulatoire des rayons X.

            Bungetianu a publié aussi un autre ouvrage sur les rayons X [6] présenté à Bucarest le 14 mars 1896, à plus d’un mois avant celui de Paris. Il est intitulé Razele lui Röntgen (Les rayons de Röntgen) et comprend dans 15 pages une ample présentation des rayons X, ou, tel que dit l’auteur «en quoi résident ces rayons, quelles sont leurs propriétés établies jusqu'à présent par les recherches, quelles sont les opinions des savants sur leur nature» (p. 4). Parmi ces dernières : «flux moléculaire», «propagation par vibrations longitudinales ou transversales de l’éther», etc.




            C’est tout à fait surprenant que dans cet ouvrage, n’ayant paru que trois mois après l’historique communication de Röntgen sur la découverte des rayons X, le physicien roumain a eu l’intuition de prévoir que la longueur d’onde de ces rayons est du même ordre de grandeur que celui des distances entre les atomes (les paramètres du réseau). C’est ainsi qu’à propos de l’explication de la pénétration des métaux par les rayons X, métaux qui dans la théorie de Maxwell étaient considérés opaques, Bungetianu dit (p. 14) :

            «Cependant on pourrait résoudre enfin cette difficulté d’interprétation si on supposait que la vibration de l’éther serait très rapide, c’est-à-dire qu’elle aurait une période de même petitesse que la distance entre les molécules de la matière ; en ce cas la longueur d’onde correspondante serait très petite et la propagation parmi les molécules des corps, admissible».

            Dans l’histoire des sciences et des techniques, bien des fois une grande découverte est le résultat de l’accumulation d’une longue suite d’observations et de recherches qui permettent plus tard, par leur systématisation et généralisation, de pénétrer la nature du phénomène et établir ses lois.

            Le mérite de Bungetianu, ainsi qu’il résulte de ce qui a été dit ci-dessus, malgré les expériences non rigoureuses effectuées, est qu’il a eu la conviction ferme de la réalité de l’interférence des rayons X, de leur nature ondulatoire et qu’il a prévu l’ordre de grandeur, le même pour leur longueur d’onde et pour la distance interatomique. Il n’a pas utilise de cristaux et a mis l’apparition des franges d’interférence au compte de l’hypothèse de la création de plusieurs centres secondaires d’émission de rayons X (phénomène observe aussi par V.P. Linnik en 1930).

            Dumitru Bungetianu était licencié en mathématiques de l’Université de Iasi, puis de la Faculté de sciences de Paris, également en sciences physico-chimiques. Il a suivi des cours à la Sorbonne et au Collège de France et a fait des études de météorologie à Paris, Berlin, Hamburg et Petersburg.

            Relativement à la recherche réalisée sur les rayons X à peine découvertes et leur utilisation, il convient de citer le nom du physicien Dumitru Hurmuzescu (1865 – 1954) qui a passé son doctorat avec Gabriel Lippmann en 1896 et découvre la même année, en collaboration avec le physicien français René Benoit (1844 – 1922), le fait que les rayons X rendent l’air à travers lequel ils passent, bon conducteur d’électricité.

            Le médecin Constantin Dumitrescu – Severeanu effectue à l’hôpital Coltea de Bucarest les premières radiographies du pays. Et toujours en 1896, le neurologiste Gheorghe Marinescu, en utilisant l’appareil Röntgen construit par D. Hurmuzescu et R. Benoit, réalise les premières radiographies au monde pour établir le diagnostic différentiel entre l’acromégalie et l’érythromégalie.

BIBLIOGRAPHIE

1.       H. Colan, Histoire de la science des matériaux – Périodes et contributions roumaines, Académie Roumaine, NOESIS, Travaux du Comite Roumain d’Histoire et de Philosophie des Sciences XX (1995), pp. 115-122.

2.       M. v. Laue, Istoria fizicii, Editura stiintifica, Bucuresti, 1963 (Geschichte der Physik, Ullstein Bücher, Berlin 1958).

3.       M. V. Laue , Drumul meu în fizica. Dans: Istoria fizicii [2] (Dans: Hans Hartmann, Schöpfer des neuen Weltbildes, 1952)

4.       I. Ivanov, A. Negoescu, Contributia stiintei românesti la descoperirea difractiei radiatiilor Roentgen, Revista Învatamântului Superior 9 (1967), Nr. 4, pp. 71-76.

5.       D. Bungetianu, La diffraction des rayons X. L’Eclairage Electrique, Revue hebdomadaire d’électricité, Paris, Tome VII, 3 (1896), No. 17 (25 avril), pp. 165-167

6.       D. Bungetianu, Razele lui Röntgen, Conférence donnée devant la société des Amis des Sciences Mathématiques (Séance du 14 mars 1896), Bucuresti, Tipografia Gutenberg, Joseph Göbl, 1896.

7.       H. Colan, A century since the first publication regarding the X-ray diffraction, 23rd Symposium of the International Committee for the History of Technology, Abstract of Papers ICOHTEC 96, Budapest 7-11.08.1996, p. 211.


Comparison between 4 panoramic X-ray retrofit options

Dipl. ing. Alexandru Cetateanu

DXIS

AJAT

SCHICK

PSP–All Companies

Technology used1 (see explanations under)

CCD (Charge-Coupled Devices)

Cadmium Tellurium

CMOS (Complementary Metal Oxide Semiconductor)

Memory Phosphor plates

Picture quality2

Good

Better

Acceptable

Good

Radiation reduction3

30 to 70% less radiation

No reduction at all

No reduction at all

No reduction

Sensor size4

10 x 2 x 2.5 inch

12x10x5 inch

10x 2 x 0.5 inch, fixed on the film drum or cassette

N/A 5

Computer connection6

Single coaxial cable up to 100m

Thick, multiple wires cable

Thick, multiple wires cable

N/A

Power supply7

Self-powered from the computer connection

AC/DC Power Supply

AC/DC power supply

N/A

Compatibility8

21 different models

and manufacturers

8 different models

and manufacturers

12 different models

and manufacturers

ALL, including

Cephs

Pixel size9

96µ

100µ

100 µ

unknown

Product available since10

1995

2006

2000

1998

Real Time11

YES, the picture is seen

during the rotation

YES, the picture is seen

during the rotation

NO, the picture will be seen after  the end of Pan rotation

NO, requires Scanner – the picture becomes available in a few minutes; similar to film

Lines pairs12

5.2

5

5

5

Removal of the old film mechanism13

YES

YES

NO

NO

Ceph option available14

NO

NO

NO

YES

Full control of the X-ray Pan15

YES

NO

NO

N/A

Different layers on focus16

NO

YES

NO

NO

Visibility for positioning the patient17

More visibility than before the conversion to digital

Less visibility

than before the conversion

Same visibility as before the conversion

Same visibility as before the conversion

Time required to see the image18

Rotation time plus 2 seconds

Rotation time plus 2 seconds

Rotation time plus approximately 10 seconds

2 to 10 minutes; varies according to the chosen quality level for the image

Picture size19

12.7x 30 cm

15x30 cm

15x30 cm

Same as films

Time to Install 20

4-6 h (depends on the

model of the Pan)

About 5 h

About 2 h

About 2 h

Price 21

About $16,000

About $16,000

About $14,000

About $20.000

 

Notes:

1.       a. CCD (Charge-Coupled Devices) technology, same as the one used in digital photo cameras, but requiring a lot larger sensors. It is expensive, but very stable and reliable. The two inventors of the CCD, among which one is Canadian, were awarded the Nobel Prize for Physics in 2009. Using this technology for taking X-rays requires a scintillation plate inside the sensor, which reduces slightly the quality of the image.

b. Cadmium - Tellurium technology is new and reliable but rather expensive. It does not require a scintillation plate, but requires instead many electronics, resulting in a larger sensor.

c. CMOS technology - less expensive, but also delivers lower quality pictures. It also requires a scintillation plate inside the sensor.

d. PSP technology - film like (a lot thicker) phosphor plates. Unlike films, will not require chemicals for processing, but will require a special, expensive scanner to read the image from the plates. Time to read the plate depends on the size and the resolution and may go up to tens of minutes for highest quality images. Also, there is a recurring cost for changing the phosphor plates and the sleeves after a certain number of exposures.

2.       The picture quality looks better with Tl-Cd Sensors, and good with CCD and PSP. Both the choice of CMOS technology and the design employed in the retrofit kit from Schick lead to the result that that the quality and the geometry of its X-ray images is not as good and stable as with the other systems.

3.       Only DXIS will reduce the radiation, by replacing the primary slot surface with a new slot. Depends on the Pan model to be retrofitted to Digital, the reduction is between 30 to 70%). All the others will use the same device as the one used for films, meaning the same radiation level for the patients. The rotation time cannot be reduced and the KVp also (the KVp level is dependent  of the size of the patient head – bigger head – more kVp is required).

4.       Sensor size is important for the visibility required to position the patient properly, which is very important in order to obtain good pictures.

5.       As this technology uses a scanner, the size of the phosphor plates used for taking X-rays is the same as for films. Consumables still required (phosphorus plates, sleeves etc ) .

6.       It is preferable to have less wires and connectors, as this means a more reliable system.

7.       The presence of an AC/DC adaptor may lead to possible electrical noise interference with the picture. A battery is the best solution as it does not produce interference, it is not expensive, but will have to be replaced each 4-5 years. Among the systems tested, only DXIS uses a battery.