Documente online.
Username / Parola inexistente
  Zona de administrare documente. Fisierele tale  
Am uitat parola x Creaza cont nou
  Home Exploreaza






REGIMUL ELECTROSTATIC

Fizica











ALTE DOCUMENTE

PRESIUNEA
Lumina
Optica geometrica
Redresor activ fara diode
ENERGIA HIDRAULICA
Curentii intr-un circuit electric
Ce legatura este intre Fizica si Matematica?
Atomul
Unitati de masura pentru lungimi
REGIMUL ELECTROSTATIC


REGIMUL ELECTROSTATIC

3.1.  Definire, caracterizare, legi si

teoreme specifice 

Regimul electrostatic este regimul starilor electrice invariabile în timp, neînsotite de curenti electrici de conductie si de transformari energetice în conductoare, fiind  produs de sarcini electrice sau de distributii de sarcini electrice adevarate sau de polarizatie.

Caracteristice acestui regim sunt starile de electrizare si cele de polarizare electrica ale corpurilor izolatoare si existenta câmpului electrostatic.

Se numeste stare de electrizare sau stare de încarcare electrica adevarata a unui corp acea stare complet caracterizata de sarcina electrica  libera, q, în general multiplu al sarcinii elementare care este sarcina electronului.+)

Se numeste câmp electrostatic câmpul produs de o distributie de sarcini electrice aflate în stare de repaus.

Din punct de vedere al actiunilor ponderomotoare (cupluri si forte) exercitate asupra unui mic corp de proba din material izolator (dielectric), polarizat, câmpul electrostatic poate fi:

a. câmp electrostatic omogen, în care intensitatea sa, , nu depinde de  pozitie, (r), si  care actioneaza asupra corpului de proba numai prin cupluri;

 b. câmp electrostatic neomogen, care actioneaza asupra corpului de proba prin cupluri si forte.

 Asa cum s-a aratat, în cazul unui câmp electrostatic omogen, vectorul câmp electric  nu depinde de distanta , fiind considerat constant în toate punctele din câmp,  pe când în cazul unui câmp electrostatic neomogen, acesta depinde de  (); practic un câmp electric se poate considera omogen doar între armaturile foarte apropiate ale unui condensator electric.

Cum se poate evidentia starea de electrizare ?

Aceasta se poate pune în evidenta introducând într-un câmp electric omogen un mic corp de proba electrizat, de exemplu, prin frecare sau prin contact.

Experienta arata ca asupra corpului se exercita o forta electrica  independenta de pozitia corpului (r) si orientarea acestuia, având directia vectorului câmp electric  si fiind proportionala cu el:

.

(3.1.1)

În aceasta relatie factorul de proportionalitate q nu depinde de  si nici de , aceasta definind starea de încarcare electrica adevarata (starea de electrizare) a corpului de proba; q reprezinta sarcina electrica (adevarata) a corpului de proba si este, prin conventie,  pozitiva sau negativa:

                                    ,

dupa cum  si  sunt omoparalele sau antiparalele.

Notiunea de stare de încarcare electrica adevarata,doreste sa evidentieze faptul ca, în afara de aceasta, mai exista o stare de electrizare si anume, electrizarea prin polarizare( a se vedea capitolul referitor la polarizare).  

Starea de electrizare se poate obtine prin: frecare; contact; iradiere; introducerea corpului  izolator într-un câmp electric.

În afara marimii (primitive) q, sarcina electrica poate fi exprimata si cu ajutorul densitatilor de sarcina lineica, superficiala, volumetrica, ,  - marimi  derivate.

Câstigarea starii de electrizare poarta numele de încarcare electrica, iar pierderea acesteia - descarcare electrica.

Din punct de vedere al modului de descarcare electrica se deosebesc:

a)           conductori electrici: metale, carbune, solutii de saruri organice, baze, acizi etc. - cu descarcare practic instantanee(relaxare electrostatica  rapida);

b)          izolatori electrici(dielectrici): matase, mica, marmura, portelan, cauciuc, rasini sintetice, mase plastice, textolit, pertinax, aer uscat, uleiuri minerale, lemn, sticla, vid  etc. - cu descarcare practic  foarte lenta în timp(relaxare în timp îndelungat).

Astfel, conductoarele descarca prin contact corpurile electrizate, pe când izolantii nu-si schimba practic starea electrica în contact cu corpurile de electrizate.

 Pentru descarcarea unui corp electrizat , acesta se va pune în contact cu un conductor, în general de dimensiuni mai mari decât acesta.

Conservarea sarcinii electrice

Sarcina totala a unui sistem de corpuri izolat este constanta:

                                   

.

(3.1.2)

Aceasta relatie este o consecinta ,pentru corpuri izolate electric, a legii conservarii sarcinii electrice ().

Conservarea sarcinii electrice poate fi evidentiata experimental în doua situatii:

   a) daca doua corpuri electrizate diferit vin în contact, încarcarea unuia se transmite partial si celuilalt, astfel încât sarcina totala ramâne constanta;

   b) daca se freaca doua corpuri, dintre care unul se încarca cu sarcina pozitiva iar celalat - negativa, valoarea absoluta a sarcinii totale ramâne constanta (frecarea nu aduce sarcini noi).

La frecarea a doua corpuri izolatoare, unul de celalalt, cel cu constanta dielectrica mai mare se încarca pozitiv, iar celalalt negativ(regula lui Cohen).Densitatea sarcinii electrice superficiale este data de relatia:

                          (C/m2).

·        Interpretarea fizica a starii de electrizare

La nivel macroscopic starea de încarcare electrica se defineste ca un exces sau un deficit de purtatori de sarcina electrica libera:

-         electroni, în cazul metalelor;

-         electroni si goluri, în cazul dielectricilor;

-         ioni pozitivi si negativi în electroliti.

Încarcarea sau descarcarea electrica a corpurilor este urmarea unui schimb de purtatori de sarcini electrice libere între acestea.

·        Unitati de masura. Rationalizarea

Unitatea de masura a sarcinii electrice este Coulombul(C). Un coulomb este sarcina unui mic corp conductor care exercita o forta de 9.109N asupra unui alt corp conductor, încarcat cu aceeasi cantitate de sarcina, situat în vid la distanta de 1m si  situat departe de alte corpuri (influente electrice).

Sistemul de unitati de masura utilizat este sistemul MKSA rationalizat, respecti 212h75c v sistemul international SI.

Rationalizarea a condus la disparitia factorului (sau ) din legile generale si ,ca urmare, la simplificarea acestora, cu pretul aparitiei acestui factor în alte relatii mai putin generale (de exemplu în teorema lui Coulomb).

În sistemul international se aleg:

                       - sistemul MKS ca sistem mecanic de baza;

                       - constanta k= 1(k= în sisteme nerationalizate);

                       - amperul (A) ca unitate independenta, aceasta corespunzând la alegerea lui  ca marime fundamentala. Ca urmare, permitivitatea dielectrica a vidului ,, rezulta ca o marime derivata în cadrul acestui sistem.

Exemplu - Definirea unitatii de sarcina electrica (Coulomb-ul) cu ajutorul teoremei lui Coulomb:

;  k=1;  ;

;   ;   rezulta: q=1 Coulomb.

·        Legi si teoreme specifice

Principalele legi si teoreme utilizate la studiul regimului electrostatic sunt:

- legea fluxului electric;

                  - legea polarizatiei electrice temporare;

                  - legea legaturii dintre ,si ;

                  - legea conservarii sarcinii electrice;

                  - legea echilibrului electrostatic (caz particular pentru regimul electrostatic al legii conductiei electrice);

                  - teorema lui Coulomb;

                  - teorema potentialului electrostatic;

                  - teorema conservarii componentelor tangentiale si respectiv normale ale câmpului electric si ale inductiei electrice;

                  - teorema refractiei liniilor de câmp electric la suprafata de separatie a doua medii;

                  - teorema energiei în câmpul electrostatic.

3.2.  Câmpul electric si potentialul electric coulombian

Un câmp electric coulombian este acel câmp electrostatic asociat unei repartitii de sarcina electrica, invariabila în timp , ce se poate calcula cu ajutorul teoremei lui Coulomb. În continuare se studiaza câmpurile coulombiene.

  • Câmpul electric produs de un mic corp de proba în vid

Fie un mic corp de proba punctiform (un corp izolator, învelit într-o foita metalica) încarcat cu sarcina electrica q.

Daca în apropierea acestui corp se duce un mic corp de proba identic, încarcat cu aceeasi cantitate de sarcina si de acelasi semn, între cele doua corpuri apar forte de interactiune prin câmpul electric produs de acestea, care poate fi exprimat cu ajutorul formulei lui Coulomb, prezentata în cap.2. :

.

Pe de alta parte, primul corp actioneaza asupra celui de al doilea, prin câmpul sau,  cu o forta data de relatia cunoscuta:

.

Din cele doua relatii, prin egalarea fortelor, rezulta expresia intensitatii câmpului electric produs de un mic corp de proba încarcat cu sarcina q într-un punct F , situat la distanta R de acesta, sub forma :

, unde

(3.2.1)

Daca se scrie , unde , relatia (3.2.1) se mai poate pune sub forma:

  .  

(3.2.2)

Pentru q>0  sensul câmpului  este îndreptat, prin conventie,  dinspre corp spre exterior (fig. 3.2.1.a).

Pentru q<0  sensul câmpului  este îndreptat,  prin conventie,   dinspre exterior  spre corpul de proba (fig. 3.2.1.b).

Fig.3.2.1.a. Sensul lui  la q>0

Fig.3.2.1.b. Sensul lui  la q<0

Se observa ca  în cazul corpului punctiform, distributia lui  este radiala, câmpul electric având aceleasi valori în toate directiile, în conditiile mediului înconjurator omogen si izotrop.

Cum  si  sunt  coliniare, pentru o directie  intensitatea câmpului electric  devine o marime scalara:

 .

(3.2.3)

Originea sistemului de coordonate carteziene care contine corpurile analizate poate sa nu fie în punctul în care se afla micul corp de proba încarcat cu sarcina q (fig.  3.2.2).

Fig.3.2.2. Corp de proba încarcat cu sarcina q

Într-un punct oarecare , câmpul electric  se va calcula pornind de la componentele sale (Ex, Ey, Ez), tinând cont de faptul ca:

;  si  , respectiv

.

Se obtin componentele:

;

;

.

(3.2.4)

                                      

În modul, intensitatea câmpului electric este data de expresia:

      .

(3.2.5)

                                   

Nota

La nivel microscopic, interactiile electrice se realizeaza prin intermediul fotonilor, care apar, ca particule de radiatie, în jurul sarcinilor electrice. Acesti fotoni nu pot fi detectati, fiind numiti fotoni virtuali. Existenta lor a fost prevazuta, înca din anul 1930, de Enrico Fermi, fiind pusi în evidenta în diagramele Feynman.

De studiul fenomenelor de interactiune a particulelor în câmpul electromagnetic se ocupa Electrodinamica Cuantica (QED).

Constanta care masoara intensitatea de cuplaj a doi electroni sau a doi protoni , respectiv energia lor electrostatica, acestia fiind situati la o distanta egala cu raza Bohr( m  ) unul de celalalt, se numeste ''constanta de cuplaj electromagnetic'',  , unde .

  

  • Câmpul electric produs de o sfera metalica încarcata cu distributia superficiala de sarcina.

       Se considera o sfera metalica de raza R si suprafata S, încarcata cu distributia superficiala de sarcina  fig.3.2.3).

Fig. 3.2.3.Sfera metalica încarcata

Se pune problema determinarii intensitatii câmpului electric în punctele P1 si P2, aflate la distantele R1, respectiv R2 de centrul sferei, unde aceste distante au acelasi ordin de marime cu raza sferei.

Din motive de simetrie, liniile de câmp sunt radiale. La calculul intensitatii câmpului electric pentru corpuri cu simetrie sferica , cilindrica sau plana se poate utiliza teorema lui Gauss - un caz   particular al legii fluxului electric:

 . 

(3.2.6)

Aceasta reprezinta expresia fluxului câmpului electric printr-o suprafata închisa , ce contine o distributie superficiala de sarcina .

În cazul de fata   si   sunt omoparalele, suprafata  fiind o suprafata sferica, concentrica cu sfera data si aflata la o distanta oarecare  de centrul 0.

Ca urmare, se poate scrie:

(3.2.7)

                                                              

Pe de alta parte, aplicând  teorema lui Gauss rezulta:

  ,

(3.2.8)

unde A reprezinta  aria suprafetei sferei de raza r, încarcata cu distributia de sarcina .

Din egalitatea  celor doua relatii se obtine expresia intensitatii câmpului electric , la o distanta oarecare  de sfera data:

;  .

(3.2.9)

Particularizând acum relatia pentru doua puncte, unul în exterior si unul în interior,  se obtine:

(P1)  , sau: ; 

(P2): .       

(3.2.10)

În figura (3.2.4) se prezinta grafic variatia cu distanta r  a câmpului .

Fig.3.2.4. Variatia cu distanta r  a câmpului

S-a ales ca origine pentru reprezentarea  grafica un punct pe suprafata sferei S.

Pe suprafata sferei câmpul electric are valoarea constanta:

.

(3.2.11)

                                                                                                         

Se observa ca valoarea câmpului  electric în interiorul unei sfere metalice (în general în interiorul unei suprafete metalice închise), este egala cu zero( indiferent daca sfera este plina sau goala).

·        Inductia electrostatica

Daca un baston de sticla încarcat( prin frecare de o pânza de matase)  cu sarcina electrica (pozitiva) este apropiat cu un capat de un baston de metal izolat (de alte corpuri metalice, sau de pamânt), se constata o deplasare a electronilor catre un capat al bastonului, miscarea acestora încetând apoi datorita fortei electrice rezultate care se stabileste între cele doua corpuri.

Este exemplul unui fenomen tipic de inductie prin câmp electric (fig. 3.2.5).

Fig.3.2.5. Inductie prin câmp electric

Un astfel de fenomen se produce  numai în cazul corpurilor conductoare supuse câmpurilor electrice, pe suprafata acestor corpuri apasând sarcini opuse celor care produc câmp electric inductor.

La încetarea deplasarii purtatorilor de sarcina electrica (electroni), se restabileste în conductor echilibrul electrostatic ().

Daca bastonul se îndeparteaza, conductorul revine la starea initiala (neutra, din punct de vedere electric).

·        Distributia sarcinilor electrice suplimentare depuse pe un conductor izolat

Când o sarcina electrica libera este depusa pe un conductor izolat, neîncarcat,  într-un punct oarecare, aceasta sarcina va produce un câmp electric în interior care va actiona asupra purtatorilor de sarcina (electroni liberi), producând deplasarea lor si deci dând nastere unor curenti interni. Acesti curenti redistribuie sarcina suplimentara, astfel încât câmpul intern creat slabeste în intensitate într-un interval de timp neglijabil. Când câmpul intern redevine zero, înseamna ca în interiorul conductorului curentii au încetat si se revine la regimul electrostatic ().

Asadar, sarcina electrica adusa din exterior pe un conductor aflat în regim electrostatic se distribuie instantaneu pe toata suprafata acestuia, conductorul revenind la conditia de echilibru electrostatic.

·        Superpozitia câmpurilor coulombiene

Se constata experimental ca asupra unui mic corp de proba electrizat, care se gaseste  simultan sub actiunea mai multor corpuri punctuale, încarcate cu sarcini electrice  , actioneaza o forta  egala cu suma vectoriala a fortelor  pe care le-ar exercita asupra corpului fiecare dintre corpurile punctuale, daca ar actiona singura asupra corpului de proba (fig. 3.2.6).

.

(3.2.12)

Fig. 3.2.6. Superpozitia câmpurilor coulombiene

Acelasi lucru se poate afirma si despre câmpul electric rezultant,  , produs de un ansamblu de n corpuri punctuale încarcate cu sarcina electrica, într-un punct oarecare P (nu se ia în consideratie contributia corpului de proba, aflat chiar în punctul P).

Demonstratie

Se stie ca fortele care se exercita de catre fiecare corp punctual  asupra corpului de proba încarcat cu sarcina  sunt de forma:

                                    ; ,

unde  reprezinta  câmpurile electrice produse în punctul P de fiecare corp punctual , mediul considerat  fiind vidul.

Ţinând seama de faptul ca forta rezultanta în punctul P se  poate scrie sub forma:

(3.2.13)

                                                                         

si luând în consideratie expresia (3.2.12) se obtine, înlocuind pe  si respectiv pe , relatia:

,

(3.2.14)

respectiv

(3.2.15)

Vectorul intensitatea câmpului electric în vid, produs într-un  punct P oarecare de un ansamblu de sarcini punctiforme este suma vectoriala a vectorilor câmp electric produsi în punctul P de fiecare corp punctual în parte, ca si cum aceasta ar actiona singur în sistem.

Ţinând seama de expresia intensitatii câmpului electric, relatia (3.2.15) se mai poate scrie:

(3.2.16)

S-ar putea spune ca vectorul  caracterizeaza un câmp electric (în vid sau într-un mediu oarecare) în sens longitudinal, pe când vectorul  îl caracterizeaza în sens transversal.

·        Câmpuri  electrice în corpuri izolatoare (dielectrici)

Studiul câmpului electrostatic în corpuri (izolatoare) se bazeaza pe determinarea vectorilor  si respectiv  în doua fante înguste si scurte, practicate în aceste corpuri (fig. 3.3.7 a si b).

Fig.3.2.7.a. Câmpul E

Fig.3.2.7.b. Inductia D

Astfel intensitatea câmpului electric  într-un punct din corp este egala numeric cu vectorul câmp  din vidul unui mic canal orientat în lungul directiei polarizatiei electrice , iar inductia electrica  într-un punct dintr-un corp este o marime de stare locala a câmpului electric, egala numeric cu produsul dintre  si vectorul câmp  din vidul unei mici fante, extrem de plate, orientate transversal fata de directia locala a polarizatiei electrice .

·        Potentialul electrostatic

Asa dupa cum s-a aratat la teorema potentialului electrostatic (forma integrala: ), câmpul electric coulombian  este un câmp de vectori pentru care se poate defini o functie scalara de punct V prin relatia:

,

(3.2.17)

deoarece produsul  este, în acest caz, o diferentiala totala.

Functia  poarta numele de potentialul scalar al câmpului electrostatic si are forma: .

Relatia (3.2.17) se mai poate scrie :

                                   

;

(3.2.17')

sau

; ;  ,

(3.2.18)

unde

,

iar

.

Expresia:                     

                                     

reprezinta forma locala a teoremei potentialului electrostatic, iar expresia

                                               

- forma integrala a acesteia,

Alte moduri de scriere ale relatiei (3.2.17')sunt:

 ,

(3.2.19)

                                                                                    

cu operatorul Nabla: ,

respectiv

  ;    .

(3.2.20)

Câmpul electric coulombian  are rotorul nul în orice punct al domeniului analizat  deoarece deriva dintr-un potential scalar V.

·        Expresia potentialului electrostatic în câmp coulombian

Pornind de la relatia (3.2.17')si integrând-o în lungul unei curbe (C) oarecare în câmp electrostatic, între doua puncte (fig 3.2.8), se obtine:

Fig.3.2.8. Drum în câmp electrostatic

                                   

;

;

,

de unde:                     

,

 sau

.

(3.2.21)

* este potentialul într-un punct oarecare P, iar este potentialul unui punct de referinta Po, care se considera, în mod obisnuit, pe pamânt, la distanta mare de punctul P (). Cum potentialul pamântului este, prin conventie,  nul,  si expresia potentialului electric coulombian într-un punct oarecare P din câmpul  electrostatic în vid devine:      

.

(3.2.22)

Aceasta relatie arata ca potentialul este egal cu viteza de scadere a intensitatii câmpului electric fata de punctul în care se calculeaza acesta, luându-se ca potential de referinta potentialul (nul) al pamântului.

În cazul particular al câmpului electric produs în vid de un corp punctiform încarcat cu sarcina q, a carui expresie este :

                                   

,

forma expresiei  potentialului electrostatic devine:          

.

Cum în acest caz , prin integrare rezulta:

;

                                   

  .

(3.2.23)

Convenind alegerea potentialului de referinta nul la infinit, constanta este nula si rezulta:

    , cu     .

(3.2.24)

                                                             

·        Suprafete echipotentiale

Se numesc suprafete echipotentiale suprafetele caracterizate de ecuatia:

V(x,y,z) = const.

(3.2.25)

În raport cu liniile câmpului electric , suprafetele echipotentiale sunt ortogonale.

Astfel, din relatia , valabila pentru orice curba închisa  în câmpul electric, deci si pentru curbele închise duse pe suprafetele echipotentiale, scrisa sub forma:

, rezulta ortogonalitatea vectorilor  (continut de suprafata echipotentiala si grad (fig. 3.2.9)).

Fig.3.2.9. Suprafete echipotentiale

Liniile de câmp sunt, deci, normale la suprafetele echipotentiale.

În sensul vectorului câmp  potentialul  scade.

Din relatia  se poate trage concluzia ca vectorul  este mai intens în zone unde suprafetele echipotentiale sunt mai apropiate, adica  este mai mic si invers.

·        Calculul tensiunii electrice  cu ajutorul potentialului

Tensiunea electrica  dintre doua puncte  si  aflate în câmp electrostatic are expresia (fig. 3.2.10):

(3.2.26)

                         

    .

Tensiunea electrica între doua puncte situate în câmpul electrostatic este egala cu diferenta potentialelor electrice ale celor doua puncte.

Fig, 3.2.10. Tensiunea electrica  dintre doua puncte

·        Potentialul într-un punct  al câmpului electrostatic dat de un ansamblu de corpuri punctuale încarcate

În cazul unui ansamblu de corpuri punctuale, încarcate cu sarcinile , utilizând principiul superpozitiei se poate scrie:

 ,

(3.2.27)

unde  sunt distantele de la corpuri la punctul , potentialul de referinta fiind potentialul pamântului (). În cazul unui corp cu distributie  variata de sarcina: volumetrica, superficiala, lineica si sarcina electrica libera, potentialul într-un punct  exterior, aflat la distanta medie geometrica (- a se vedea în acest sens relatiile lui MAXWELL)  fata de corp este:

,

(3.2.28)

potentialul de referinta fiind de asemenea egal cu zero.

·        Potentialul  si câmpul electrostatic în interiorul conductoarelor omogene, în regim electrostatic

                        Din conditia de echilibru electrostatic , cum  este nul rezulta ca în interiorul conductoarelor omogene aflate în regim electrostatic (neparcurse de curent de conductie) câmpul electric  (fig. 3.2.11).

Fig.3.2.11. Câmpul electric în interiorul conductoarelor omogene

            Din relatia  rezulta ca , adica toate punctele din interiorul conductoarelor aflate în regim electrostatic au acelasi potential ().

Sarcina electrica libera din interiorul suprafetei conductorului are rezultanta nula, existând o distributie de sarcina numai la suprafata conductorului (la interfata cu aerul presiunea, temperatura, diferenta de densitate variaza de la un mediu la altul).

Unitatea de masura a potentialului electrostatic  în SI este

                                    [V]=1V (Volt).

·        Introducerea notiunii de potential. Interpretare fizica

Conceptul de potential a fost indus în fizica de Isac Newton pentru explicarea atractiei dintre corpuri. Functia potential este introdusa în matematici de Gauss, în 1840, relativ la suprafetele echipotentiale.

Interpretare fizica : Potentialul electric într-un punct oarecare P din câmpul electrostatic reprezinta lucrul mecanic efectuat pentru a deplasa un corp punctiform de sarcina q în câmp electric, între punctul  si punctul curent P:

.

(3.2.29)

Demonstratie:

Lucrul mecanic cheltuit pentru a efectua o astfel de deplasare este dat de relatia:

.

(3.2.30)

Lucrul mecanic este luat cu sensul minus, deoarece acesta se considera ca este opus fortei câmpului în care se face experienta. Din expresia lucrului mecanic se obtine expresia potentialului:

.

                                   

·        Conditia de echilibru electrostatic

Starea de echilibru electrostatic este starea de anulare a miscarii ordonate a particulelor în conductoare, fiind caracterizata prin relatia:

                                   

.

(3.2.31)

Aceasta relatie reprezinta un caz particular al legii conductiei electrice (), valabila în cazul în care densitatea de curent este nula( ).

Marimea  poarta numele de câmp electric imprimat si apare în conductoare ca o consecinta, exprimata electric , a fenomenelor neelectrice produse asupra acestora (acceleratii, diferente de temperatura, diferente de presiune etc.); este o marime electrica de material.

Din relatia (3.2.31) rezulta  , relatie care arata ca, la atingerea starii de echilibru electrostatic, valoarea pe care o ia intensitatea câmpului electric într-un conductor neomogen sau accelerat este valoarea intensitatii câmpului electric imprimat, luata cu semnul minus.

În cazul conductoarelor omogene si neaccelerate  si, ca urmare, conditia de echilibru electrostatic, în orice punct din interiorul acestora, devine . Aceasta relatie are câteva consecinte deosebit de importante si anume:

a. Toate punctele din interiorul unui conductor au aceslasi potential.

Astfel, din  rezulta ca între oricare doua puncte din interior este îndeplinita relatia:

;

ca urmare, , respectiv .

b.      Suprafata conductorului este echipotentiala.

Liniile de câmp electric la suprafata conductorului sunt perpendiculare pe aceasta suprafata (demonstratia se bazeaza pe cele aratate la punctul a.).

c. Sarcina electrica din interiorul conductorului este nula. Exista o distributie slaba de sarcina la suprafata conductorului, unde se schimba conditiile de temperatura, presiune etc.

d. Liniile de câmp electric din exteriorul unui conductor nu patrund în interiorul unui gol din conductor. Astfel, conductorul are rol de ecran electrostatic.

3.3.  Polarizarea dielectricilor

Starea de încarcare cu sarcina electrica adevarata nu este singura stare de electrizare, o alta fiind polarizarea dielectricilor (materiale izolatoare).

Se numeste stare de polarizare electrica acea stare a corpurilor izolatoare care determina exercitarea asupra lor a unor forte si cupluri electrice suplimentare fata de cele conditionate de eventuala lor stare de încarcare electrica, atunci când sunt introduse în câmpuri electrice.

Identificarea starii de polarizare

În câmpuri electrice omogene ( nu depinde de ) , un mic corp de proba polarizat electric este supus numai unui cuplu, forta de interactiune fiind egala cu zero.

Acest lucru poate fi evidentiat prin urmatoarea experienta: se aduc în apropierea unui corp electrizat (încarcat cu sarcina adevarata) mici corpuri izolatoare, foarte usoare (mici bucatele de hârtie), neîncarcate cu sarcini electrice; acestea vor fi atrase de corpul electrizat, desi initial nu erau încarcate electric. Concluzia care se poate trage de aici este aceea ca aceste corpuri s-au polarizat sub actiunea câmpului electric al corpului electrizat, între ele si corpul electrizat aparând interactiuni sub forma de cupluri.

Asadar, un corp este polarizat electric daca produce câmp electric si este supus unor actiuni ponderomotoare în câmp electric exterior, fara a avea densitatea de sarcina electrica libera.

O comparatie între modurile de manifestare în câmp electric a corpurilor electrizate si a celor polarizate este prezentata mai jos:

a)corp electrizat în câmp electric omogen:

        

b)corp electrizat în câmp electric neomogen:

        

      

c)corp polarizat în câmp electric omogen:

     

d)corp polarizat în câmp electric neomogen:               

        

Observatie

Câmpul electric omogen este acela în care  nu depinde de distanta r ( = const.), în câmp electric neomogen intensitatea câmpului electric fiind o functie de distanta ().

Se poate vorbi de polarizare electrica numai în cazul corpurilor izolatoare; metalele sunt practic nepolarizabile electric.

·        Caracterizarea starii de polarizare electrica

Starea unui corp mic de proba polarizat se caracterizeaza complet prin momentul electric (C.m). Starea unui corp izolator polarizat de dimensiuni mai mari se caracterizeaza, în fiecare punct ,prin vectorul polarizatia . Asadar,  este un vector de punct.

Polarizatia corpurilor poate fi temporara sau permanenta.

Majoritatea materialelor izolatoare se polarizeaza temporar, respectiv se conformeaza legii polarizatiei temporare , atunci când sunt introduse într-un câmp electric.

Cauzele polarizarii permanente sunt:

-deformarea mecanica a unor cristale (având drept consecinta efectul piezoelectric, de pilda);

-încalzirea unor cristale;

- introducerea unor rasini, ceruri sau a plexiglasului, aflate în stare topita, într-un câmp electric exterior intens, urmata de o racire lenta în câmp.

Cele mai cunoscute materiale cu polarizatie permanenta sunt cristalele de cuart (se utilizeaza, de pilda , la realizarea de doze piezoelectrice).

Exista si un proces fizic invers efectului piezoelectric: prin excitarea pe doua fete opuse a unui cristal de cuart cu o tensiune alternativa de o anumita frecventa, cristalul capata deformari elastice; fenomen  fiind utilizat la etaloanele de frecventa, la generatoarele de ultrasunete, la ceasurile cu cuart s.a.

·        Echivalenta unui mic corp polarizat cu un dipol electric

Având în vedere faptul ca moleculele unui corp izolator sunt neutre din punct de vedere electric, studiul fenomenelor electrice care au loc în interiorul corpului polarizat se poate face, la nivel macroscopic, studiind sarcina de dipol.

Se numeste dipol electric un sistem de doua sarcini electrice punctuale, egale si de semne contrare(q, -q), situate la distanta l una fata de alta (), astfel încât produsul  este finit (fig. 3.3.1).

Fig.3.3.1. Dipol electric

Se defineste un moment al dipolului (+q,-q):

,

(3.3.1.)

unde , iar  pentru ca produsul () sa fie finit (a se vedea definitia dipolului).

Fortele care actioneaza asupra dipolului electric sunt date de relatia:

                                   

.

(3.3.2.)

·        Teorema echivalentei

În regim electrostatic, un mic corp polarizat de moment electric  este echivalent cu un dipol electric de moment , din doua puncte de vedere:

a)      al câmpului electric produs de el în vid;

b)      al actiunilor ponderomotoare (cupluri si forte) exercitate asupra lui de un câmp electric exterior.

Presupunând câmpul  omogen (fig. 3.3.1), se observa ca forta si cuplul exercitate de acesta asupra dipolului sunt echivalente cu cele exercitate asupra unui mic corp izolator:

Cuplul  are o expresie similara cuplului , al corpului de proba polarizat:

                         

Forta rezultanta supra dipolului introdus în câmp electric are aceeasi valoare cu forta  - asupra corpului de proba polarizat:

                                               

(3.3.3.)

                                                  

Teorema este demonstrata.

Studiul comportamentului unui corp polarizat cu ajutorul dipolului electric este comoda, considerând,în teoria macroscopica, sarcinile dipolare ca marimi fictive, de calcul (la scara atomica, sarcinile dipolare au corespondent în sarcinile  microscopice din atomi).

·        Interpretarea macroscopica a polarizatiei electrice

În natura corpurile sunt în mod normal neutre din punct de vedere electric, continând particule cu sarcini pozitive si negative în mod egal.

Se va considera, ca exemplu, un atom de hidrogen simplu (fig. 3.3.2, a si b).

Fig.3.3.2.a. Atomul de hidrogen

Fig.3.3.2.b. Atomul de hidrogen în câmp

În absenta unui câmp electric exterior, momentul electric mijlociu, corespunzator sarcinilor electrice (+q = proton si -q = electron) este nul (fig.3.3.2. a):

, pentru .

Momentul electric mijlociu se defineste în conditiile rotatiei electronului în jurul protonului.

Introducând atomul de hidrogen într-un câmp exterior, are loc fenomenul de polarizare, purtatorii de sarcini electrice deplasându-se putin (), în sensul câmpului (protonii) si în sens opus (electronii) (fig.3.3.2. b):

                                    .

Se produce, astfel, o polarizare a atomului de ,prin deformare  cvasielastica.

Corpurile izolatoare la care predomina polarizatia prin deformare se numesc corpuri dielectrice (pe scurt, dielectrici), iar cele la care predomina polarizarea prin orientare se numesc corpuri paraelectrice. Corpurile dielectrice sunt predominante în tehnica. Atât corpurile dielectrice cât si cele paraelectrice sunt corpuri care se polarizeaza temporar.

·        Potentialul si câmpul electric al unui mic corp polarizat

Pe baza masuratorilor experimentale si a calculelor s-a putut demonstra ca în cazul corpurilor polarizate câmpul electric scade cu distanta la puterea a treia, iar potentialul - la puterea a doua, pe masura îndepartarii de aceaste corpuri:

.

(3.3.4)

Mai mult, câmpul produs de un corp polarizat depinde nu numai de distanta, ci si de directia razei vectoare, , fiind un câmp electric neomogen (fig. 3.3.2).

Fig. 3.3.2. Potentialul si câmpul electric al unui mic corp polarizat

 

Sub actiunea câmpului electric, corpurile izolatoare se polarizeaza, fiecare element de volum  devenind un dipol electric ().

 Pentru dielectrici (izolatori) , depinde de câmpul exterior, , dar si de valorile lui anterioare. Acesta dependenta de valorile anterioare se manifesta printr-o întârziere a procesului de polarizare fata de evolutia câmpului electric si poarta numele de histerezis dielectric:

.

Rezulta, de fapt, o întârziere a vectorului  fata de câmpul polarizant .

 Se poate introduce notiunea de polarizabilitate atomica ,, care caracterizeaza atomul din punct de vedere al deformarii sale elastice în câmp electric:  

·        Rigiditatea dielectrica

Proprietatea de izolant a unui corp se poate pierde daca intensitatea câmpului electric exterior, în care este introdus, depaseste o anumita valoare limita , numita rigiditate dielectrica(Ed). Aceasta marime depinde de caracteristicile corpului, precum si de temperatura si presiunea mediului înconjurator.

Câteva valori ale rigiditatii dielectrice si ale permitivitatii dielectrice relative (dupa Manualul inginerului electrician -  SIEMENS) sunt date în tabelul urmator:

MATERIALUL

IZOLATOR

RIGIDITATE

DIELECTRICA

(kV/mm)

PERMITIVITATE

RELATIVĂ

Ulei de  transformator

20

2,2

Hârtie electroizolanta

8

2,4

Prespan

12

3,6

Pertinax

15

4,5

Rasini

15

6,0

Polietilena

40

2,3

Poliester

16

3,1

Portelan

35

6,0

Aer

45

1,00058

Observatie

În practica se ia pentru aer ; deci relatiile electrostaticii se pot scrie ,în aer ca  si în vid:

                                    .

3.4. Capacitatea electrica. Condensatoare electrice.

Calculul capacitatii unui condensator. Protectia

la descarcarea condensatoarelor

Se considera un sistem de doua conductoare omogene din acelasi material, încarcate cu sarcinile  si  , între care se afla un dielectric omogen, având permitivitatea relativa  .

Cele doua conductoare sunt mentinute la potentialele  , respectiv .

Raportul, întotdeauna pozitiv:

                                   

(3.4.1.)

se numeste capacitate electrica (fig. 3.4.1).

Fig. 3.4.1. Condensatorul electric

Un astfel de sistem poarta numele de condensator electric si se noteaza simbolic în schemele electrice cu C.

Pentru a arata ca în cazul unui condensator electric , se aplica legea fluxului electric unei suprafete închise ce trece prin atmaturile condensatorului si prin aer:

 .

(3.4.2)

Integrala este identic nula deoarece, descompunând suprafata  în suprafete laterale si suprafete prin armaturi, în primul caz (în aer), iar în cel de-al doilea (în armaturi , respectiv  sunt nule). Astfel spus,  în dielectric, deci în interiorul suprafetei , este nula si corespunzator .

Dar :                  

 ,                                                                           

(3.4.3)

deci:  

  .

(3.4.4)

Unitatea de masura pentru capacitatea electrica este Faradul:[C] =1 F (Farad), unde :                                                 .

Submultipli frecvent utilizati sunt:

;   ; .

Pentru a avea o idee asupra marimii capacitatii unui condensator electric se dau trei exemple simple:

Exemplul 1.  Capacitatea unui condensator plan format din doua armaturi, având suprafata de 100 cm2 (10 x 10 cm) fiecare, situate la distanta d = 1mm, între placi fiind aer, este de 88,33 pF.

Exemplul 2.  Capacitatea unui condensator plan format din doua armaturi având suprafata de  100 Km2 (10 x 10 Km) fiecare, situate la distanta d = 1 mm, în aer, este de 1F.

Exemplul 3.  Capacitatea pamântului, considerat drept condensator sferic, este de circa 5F.

·        Teorema capacitatii electrice

Capacitatea unui condensator liniar (în sensul ca dielectricul este liniar, respectiv este ct. si nu depinde de E) este independenta de q si de , depinzând numai de raportul acestora; capacitatea este o caracteristica de material si de geometria condensatorului (fig. 3.4.2).

Din  rezulta ; aceasta  este ecuatia unei drepte prin originea sistemului de coordonate (). În aceste conditii se poate scrie relatia:

,

unde k este factorul de scara, (), iar  este unghiul pe care îl face dreapta  cu abscisa.

·        Calculul capacitatii unui condensator

Pentru calculul capacitatii unui condensator electric se fac urmatoarele ipoteze:

a. Se presupune condensatorul încarcat cu sarcinile .

b. Se determina intensitatea câmpului electric dintre armaturi.

            c. Se calculeaza potentialele armaturilor, respectiv diferenta de potential dintre acestea (tensiunea electrica între cele doua borne ale  condensatorului).

           d.  Se calculeaza capacitatea condensatorului.

Exemplu. Calculul capacitatii unui condensator plan.

             Se considera condensatorul plan din fig. 3.4.3.

Fig.3.4.3. Condensator plan

Dielectricul se considera omogen si izotrop, având permitivitatea ; d - distanta dintre armaturi - este mult mai mica  în raport cu lungimea  armaturii.

Se duce o suprafata închisa  prin armatura pozitiva a condensatorului si prin dielectric, aceasta  suprafata având aria laterala  perpendiculara pe liniile de câmp. Aria armaturii condensatorului este A. Se vor urma, pentru calculul capacitatii, etapele aratate mai sus.

a.       Se presupune condensatorul încarcat cu sarcinile +q si -q.

b.      Pentru determinarea intensitatii câmpului electric se aplica legea fluxului electric  suprafetei elementare închise :

                                               

,

(3.4.5)

deoarece  si  sunt omoparalele pe fata laterala inferioara a lui , iar suprafata  contine în interior sarcina ; .

Ca urmare, se poate scrie:

(3.4.6)

sau, extinzând la întreaga suprafata a armaturii: 

,

(3.4.7)

sarcina fiind uniform repartizata pe suprafata armaturii .

Pe de alta parte, dielectricul fiind considerat liniar i se poate aplica relatia , respectiv , cei doi vectori fiind omoparaleli.

În aceste conditii se poate calcula E:

; .

(3.4.8)

c. Calculul tensiunii între armaturi se poate face acest în acest caz  utilizând relatia:

.

(3.4.9)

Pentru aceasta s-a considerat ca originea sistemului de coordonate este pe armatura 1, câmpul dezvoltându-se dupa directia Ox. Înlocuind pe E cu rel (3.4.8) rezulta:

.

(3.4.9)

                d. Capacitatea condensatorului plan devine în acest caz:

.

(3.4.10)

·        Teoremele capacitatilor echivalente

Se numeste capacitate echivalenta marimea , data de expresia:

,     

(3.4.11)

în care A si B sunt bornele de acces ale condensatorului echivalent.

a . Capacitatea echivalenta a condensatoarelor legate în paralel (fig. 3.4.4)

În acest caz, sarcina totala este de forma:

(3.4.12)

                                   

Fig.3.4.4. Condensatoare legate în paralel

Condensatorul echivalent cu  care se poate înlocui ansamblul paralel are capacitatea:

,

(3.4.13)

tensiunea la bornele celor n condensatoare în paralel fiind aceeasi ().

Cum ;     s.a.m.d., rezulta ca:

.

(3.4.14)

Capacitatea echivalenta a unor condensatoare conectate în paralel este suma capacitatilor acestor condensatoare.

c.       Capacitatea echivalenta a condensatoarelor legate în serie (fig. 3.4.5)

Fig.3.4.5. Condensatoare legate în serie

                

În acest caz sarcina electrica este aceeasi pentru toate condensatoarele, însa tensiunea electrica  se repartizeaza pe fiecare condensator astfel:

.

(3.4.15)

Cum:

,

rezulta:

.

                                               

Înlocuind în relatia (3.4.15) ,se obtine:

.

(3.4.16)

Pe de alta parte, ansamblul de condensatoare serie poate fi înlocuit cu capacitatea echivalenta:

.

(3.4.17)

Din egalitatea relatiilor (3.4.16) si (3.4.17) se obtine:

                                   

,

(3.4.17')

relatie pe baza careia se calculeaza

·        Încarcarea unui condensator

            Fie un circuit de c.c. care contine o sursa de c.c., E,  rezistenta R si condensatorul C. Se va analiza procesul de încarcare al condensatorului, începând din momentul închiderii întrerupatorului K.

Fig. 3.4.6. Încarcarea unui condensator

            Ecuatia circuitului în momentul închiderii întrerupatorului K(t=0) este:

.

(3.4.18.)

            Regimul de încarcare este un regim variabil (tranzitoriu), asfel ca marimile de stare,  si,, sunt variabile în timp pe întreaga durata a acestui proces.

            Se aplica legea conservarii sarcinii electrice( pentru cazul încarcarii unui condensator):

 ,

(3.4.19.)

            care în cazul de fata devine:

 .

(3.4.20.)

            Se vede ca pe durata încarcarii condensatorului sarcina electrica de pe armaturi creste continuu (mai departe se va vedea ca aceasta crestere este exponentiala).

            Ecuatia (3.4.18.) devine:

 ,

(3.4.21.)

deoarece , conform teoremei condensatorului,   .

Solutia ecuatiei diferentiale neomogene este :

  ,

(3.4.22.)

unde:

- solutia de regim liber, regim care are loc doar pe durata încarcarii condensatorului;

-  solutia de regim fortat sau permanent, valabila dupa trecerea regimului tranzitoriu, reprezentând sarcina maxima la care se încarca condensatorul si cu care se calculeaza capacitatea acestuia.

Solutia de regim liber este solutia ecuatiei diferentiale omogene:

 .

(3.4.23.)

Pentru obtinerea acesteia se rezolva ecuatia caracteristica:

 ,

(3.4.24.)

obtinând . Ca urmare, solutia ecuatiei (3.4.21.) devine :

,

(3.4.25.)

                                                                                  

unde solutia de regim permanent este:

(3.4.26.)

si reprezinta cantitatea de sarcina pe fiecare  armatura (evident , cu semnele plus si minus) când condensatorul este încarcat.

Determinarea constantei A se face punând conditia initiala privitoare la asigurarea , pe considerente fizice, a continuitatii sarcinii sarcinii pe armaturile condensatorului în momentul închiderii întrerupatorului, deci în momentul  ( ca o consecinta a  legii conservarii sarcinii electrice):

.

(3.4.27.)

Cu alte cuvinte sarcina  dinaintea închiderii întrerupatorului, respectiv din momentul  () tinde sa ramâna nemodificata pentru un interval de timp foarte scurt () , pe durata închiderii întrerupatorului, pâna la momentul () . Este vorba de conditii initiale nule.

Acelasi lucru se poate spune despre tensiunea de la bornele condensatorului. Ca urmare , în conditii initiale nule se poate scrie:

  ,

(3.4.28.)

sau:

 ;

(3.4.29.)

de unde rezulta ca .

Asadar solutia ecuatiei  (3.4.21.) devine:

 ,

(3.4.30.)

unde, asa cum s-a aratat, solutia de regim permanent este:

 .

(3.4.31.)

Relatia (3.4.3.1.) reprezinta teorema capacitatii, valabila  dupa încarcarea condensatorului , când nu mai circula curent prin circuit si .

În continuare se poate scrie:

 ,

(3.4.32.)

relatie care arata modul de evolutie al sarcinii pe armaturile condensatorului pe durata procesului de încarcare si din care se pot deduce si cazurile pentru , respectiv  .

            Concluzii

         1. Pe toata durata încarcarii condensatorului (durata regimului liber , tranzitoriu) sarcina creste pe armaturile acestuia de la

         2. Tensiunea la bornele condensatorului creste si ea conform relatiei :

.

(3.4.33.)

La terminarea încarcarii (teoretic la ) , tensiunea  devine:

,

(3.4.34.)

expresie obtinuta din rel. anterioara pentru .

3. Capacitatea condensatorului creste si ea pe durata încarcarii , de la valoarea

 la  pentru  (teoretic). Practic, încarcarea completa se atinge dupa un interval de timp  unde  reprezinta constanta de timp a circuitului.

(3.4.35.)

            Determinarea grafica a acestei constante este evidentiata în figura 4.5.7.

            4. Variatia curentului prin circuit se obtine din  legea conservarii sarcinii electrice ( pentru cazul încarcarii condensatorului):

(3.4.36.)

            Graficul evolutiei tensiunii la bornele condensatorului si a curentului ( de deplasare) prin condensator, în valori normate,  pe durata încarcarii acestuia, sunt  prezentate în figura 4.5.7. a si b. Graficul evolutiei sarcinii este asemanator celui al evolutiei tensiunii la bornele condensatorului, la o alta scara. 

Fig. 3.4.7.a. Evolutia tensiunii

Fig. 3.4.7.b. Evolutia curentului

Constanta de timp a circuitului, , se determina grafic prin ducerea tangentelor la cele doua curbe în origine. Se observa din cele doua grafice ca  încarcarea completa se atinge dupa un interval de timp .

·        Cresterea capacitatii unui condensator

Vom presupune acum ca între armaturile unui condensator, al carui dielectric era initial aerul (), se introduce un alt  dielectric cu permitivitatea relativa . În asemenea conditii, se poate arata cum capacitatea condensatorului creste de ori:

, deoarece ;

(3.4.37.)

                          

.

(3.4.38.)

          Ca urmare, raportul celor doua capacitati devine:

.

(3.4.39.)

            Se pune întrebarea : cum se explica aceasta crestere?

Se va presupune ca condensatorul ramâne conectat la sursa de alimentare ( acumulator sau retea). Câmpul electric dintre armaturi dupa introducerea noului dielectric , având , va avea expresia:

 

,

(3.4.40.)

unde :

             câmpul dintre armaturi în prezenta dielectricului aer;

            câmpul de polarizatie din noul dielectric (altul decât aerul);

            Cele doua câmpuri sunt prezentate în figura 3.4.8.a. si b.

Fig. 3.4.8.a. Câmpul electric în

                     cond. cu aer

Fig. 3.4.8.b. Câmpul electric în

                     cond. cu dielectric oarecare

            Condensatorul ramânând conectat la sursa de alimentare, potentialele celor doua  armaturi ramân constante si , ca urmare, tensiunile la borne:

 ,

(3.4.41.)

unde:

               - tensiunea la bornele condensatorului cu aer;

                 - tensiunea la bornele condensatorului cu noul dielectric.

            Din relatia (3.4.41.) rezulta ca în aceste conditii :

  .

(3.4.42.)

            Conform relatiei (3.4.40.), câmpul electric dintre armaturile condensatorului cu noul dielectric tinde sa scada datorita lui . Acest lucru nu este însa posibil deoarece condensatorul, conform ipotezei initiale,  a ramas conectat la sursa, iar aceasta forteaza egalitatea (3.4.42.). La introducerea noului dielectric capacitatea condensatorului creste de  ori si cum ( în cazul de fata , unde este t.e.m. a sursei), daca  cresterea capacitatii se datoreaza cresterii cantitatii de sarcini pe armaturi (sursa trimite noi sarcini).

·        Energia electrostatica a unui condensator

Energia electrostatica a unui condensator este acumulata în dielectricul acestuia si poate fi calculata, de pilda, prin sumarea lucrurilor mecanice elementare efectuate pentru transportul de sarcina elementara  de la o armatura la alta:

(3.4.42.)

Rezulta:

.

(3.4.43.)

Se poate calcula si densitatea de energie înmagazinata în dielectric:

,

(3.4.44.)

unde  V  este volumul dielectricului.

            Cunoscând ca:

;  ;  ,

(3.4.45.)

unde:

             A - aria armaturii condensatorului;

             d -  distanta dintre armaturi;

             E  -  câmpul electric dintre armaturi ,

rezulta:

(3.4.46.)

3.5. Energie si forte în câmpul electrostatic

 

·        Energia electrostatica a unui sistem de conductoare

Pentru a stabili un câmp electromagnetic într-o regiune din spatiu este necesar a fi efectuat un lucru mecanic exterior (se aplica primul principiu al termodinamicii, fiind vorba de o schimbare de stare).

Se considera un sistem de n corpuri conductoare, initial neîncarcate cu sarcini electrice, sistemul fiind izolat fata  de alte sisteme sau corpuri din mediu. Se încarca treptat cu sarcini electrice aduse dintr-un punct exterior , aflat la infinit, cele n conductoare ale sistemului. Energia câmpului electrostatic care se stabileste în final, când corpurile au fost încarcate, este egala cu lucrul mecanic total efectuat de fortele exterioare pentru a încarca cele n corpuri, initial neîncarcate (Fig. 3.5.1.).

Fig.3.5.1. Sistem de corpuri conductoare

În continuare va fi determinata expresia acestei energii.

Transportul sarcinilor electrice pentru încarcarea fiecaruia din cele n corpuri se face cu ajutorul unui mic corp de proba, deci în portii infinitezimale, astfel încât, la un moment, dat sarcina electrica pe un conductor oarecare  k reprezinta o fractiune din valoarea ei finala  pe acel conductor. Fie  sarcina electrica la un moment dat pe conductorul k. Pentru deplasarea micului corp de proba de la  pâna la corpul k, trebuie utilizata o forta:

,

(3.5.1)

egala si opusa celei exercitate de sarcina , depusa deja pe conductoare pâna în momentul respectiv.

Lucrul mecanic al acestei forte pe traseul () este:

,

(3.5.2)

iar lucrul mecanic efectuat la un astfel de transport pentru toate corpurile devine:

.

(3.5.3)

Având în vedere ca la un moment dat teorema potentialului electrostatic sub forma locala () se mai poate scrie:

,

(3.5.4)

cu  (punctul  fiind luat pe pamânt), va rezulta ca lucrul mecanic elementar la un transport pentru toate cele n corpuri se poate scrie sub forma:

.

(3.5.5)

Starile intermediare ale procesului de electrizare pot fi redate cu ajutorul unei variabile de stare, , unde  ,astfel:

,

,

(3.5.6)

astfel încât  devine:

.

(3.5.7.)

           Cum energia acumulata de câmpul electric care se creaza este egala cu lucrul mecanic consumat pentru producerea acesteia, relatia (3.5.5) devine:

,

(3.5.8)

de unde:

.

(3.5.9)

Prin integrare rezulta expresia finala a energiei acumulate în câmpul electric al celor n conductoare:

. (J)

(3.5.10)

Se poate defini si o densitate de energie pe unitatea de volum sub forma:

 ,   (J/m3)

(3.5.11)

astfel încât:

.

(3.5.12)

O alta forma a energiei câmpului electrostatic este data de relatia:

,    

(3.5.13)

unde:

.

(3.5.131)

                                                                                                                  

Exemplu

Energia câmpului electrostatic în dielectricul unui condensator electric încarcat (sistem format în acest caz numai din doua corpuri conductoare) este:

,

deoarece   si .

Cum  este  tensiunea la bornele condensatorului, energia câmpului devine:         

        Ţinând seama ca , expresia energiei mai poate fi scrisa sub forma:

                                   

.

·        Teoremele fortelor generalizate în câmpul electrostatic

Fortele care se exercita asupra corpurilor electrizate, situate în câmpul electrostatic, nu se pot calcula întotdeauna cu relatia lui Coulomb din urmatoarele motive:

- relatia lui Coulomb este valabila numai pentru dielectricii omogeni;

- la un numar mai mare de corpuri, utilizarea acestei relatii devine incomoda.

Ca urmare, s-a trecut la elaborarea unor metode de calcul mai generale, bazate pe lucrul mecanic care se efectuaza la o deplasare oarecare a corpurilor, asupra carora câmpul electric actioneaza printr-o forta electrica medie, numita forta generalizata , notata cu X; deplasarea medie a corpurilor din sistem ca urmare a acestei forte punând numele de coordonata generalizata, notata cu  x.

Pe baza acestor doua notiuni s-au emis teoremele fortelor generalizate, valabile în cazul corpurilor conductoare situate în câmpul electrostatic.

·        Prima teorema a fortelor generalizate

Se presupune ca dupa încarcarea conductoarelor, acestea se deconecteaza de la sursele externe, astfel ca sarcinile corpurilor ramân constante.

Energia elementara, primita de la sursele exterioare pentru cresterea sarcinii pe conductoare (), trebuie sa acopere atât cresterea de energie a conductoarelor, cât si lucrul mecanic efectuat de câmp pentru deplasarea corpurilor din sistem. Deoarece la un moment dat  si , aceasta energie devine egala cu zero:

.

(3.5.14)

Din (3.5.14) rezulta:

,

(3.5.15)

sau :

.

(3.5.16)

Interpretare fizica: când sursele exterioare sunt deconectate, lucrul mecanic se poate produce numai pe seama resurselor interne de energie ale sistemului, respectiv prin scaderea acestei energii.

Enuntul teoremei :

Forta generalizata X, corespunzatoare coordonatei generalizate x, este egala cu derivata cu semn schimbat a energiei în raport cu coordonata generalizata, la sarcini constante ale conductoarelor.

·        A doua teorema a fortelor generalizate

Se presupune ca toate corpurile conductoare sunt conectate la bornele unor surse exterioare de tensiune constanta (). Pâna la atingerea valorii corespunzatoare lui , câmpul electric al corpurilor din sistem creste, facând ca acestea sa interactioneze si sa modifice configuratia geometrica a sistemului.

Rezulta ca variaza capacitatile dintre conductoare, deci variaza si sarcinile acestora (), pâna la un nou echilibru electrostatic.

Energia elementara primita de la sursele exterioare duce la variatia energiei interne a sistemului si la compensarea lucrului mecanic efectuat pentru deplasarea corpurilor:

(3.5.17)

La , variatia de energie a sistemului este:

(3.5.18)

si reprezinta, dupa cum se vede, jumatate din energia elementara primita de la sursele exterioare.

Rezulta ca produsul  din rel. (3.5.17) reprezinta cealalta jumatate, adica:

                                   

.

Asadar, ca interpretare fizica,  aportul de energie din exterior se împarte, în mod egal, între cresterea energiei câmpului si lucrul mecanic efectuat de fortele electrice asupra corpurilor din sistem.

Ca urmare:                  

.

(3.5.19)

Enuntul teoremei:

Forta generalizata X, corespunzatoare coordonatei generalizate x, este egala cu derivata energiei în raport cu coordonata generalizata, la potentiale constante ale conductoarelor.

Cele doua expresii, ale celor doua  teoreme, sunt  echivalente, permitând obtinerea unor rezultate identice.

                                   

3.6.  Prezentare succinta a metodelor electrostaticii

 

Prin metodele electrostaticii se înteleg metodele de determinare a câmpurilor si potentialelor electrostatice în diferite medii sau corpuri.

Printre metodele mai importante se pot evidentia:

1. metoda elementara; 2. metoda imaginilor; 3. metoda ecuatiei Laplace;  4. metoda diferentelor finite.

În continuare vor fi prezentate unele dintre aceste metode si anume:  1. metoda elementara, 3. metoda ecuatiei Laplace si 4. metoda diferentelor finite.

·        Metoda elementara

Aceasta metoda consta în aplicarea legilor si teoremelor specifice regimului electrostatic, sub forma integrala. Este usor aplicabila în cazul în care câmpul electric prezinta proprietati de simetrie, care permit stabilirea directa a formei liniilor de câmp.

Exemplu

Se va calcula câmpul electric si potentialul unui fir rectiliniu infinit de forma cilindrica, încarcat uniform cu densitatea de sarcina  (fig. 3.6.1).

Se observa ca în acest caz câmpul este radial si identic în toate punctele pe directia unei raze , aflate la egala distanta de axul conductorului. Se va  alege o suprafata  de forma unui cilindru care circumscrie o portiune din conductor, coaxial cu aceasta ,si se va aplica teorema lui Gauss acestei suprafete:

     

.

(3.6.1)

Dar:

                                               

  si  ,

vectorii  si  în acest fiind perpendiculari între ei.

Ramâne din integrala doar termenul referitor la suprafata laterala, astfel ca:        

,

(3.6.2)

 si  fiind omoparaleli.

Integrând relatia (3.6.2) se obtine:

.    

(3.6.3)

Fig.3.6.1. Fir rectiliniu infinit de forma cilindrica, încarcat uniform

Pe de alta parte, conform aceleiasi teoreme se poate scrie:

.

(3.6.4)

Prin egalarea celor doua expresii (3.6.3) si (3.6.4)  se obtine  expresia câmpului electric  sub forma:

                                               

.

(3.6.5)

Cum , rezulta  si, înlocuind în (3.6.5), rezulta:

                                   

;

(3.6.6)

sau, vectorial:

.

(3.6.7)

Relatia (3.6.7) exprima intensitatea câmpului electric  într-un punct oarecare P, la distanta  de axul conductorului, considerând raza acestuia  comparabila cu aceasta distanta ().

Potentialul electric într-un punct oarecare P , situat în exteriorul  conductorului, este dat de relatia:

,

(3.6.8)

presupunând punctul  chiar si pe suprafata conductorului infinit.

Rezulta:

;

,

(3.6.9)

relatie care se mai poate scrie sub forma:

. 

(3.6.10)

                                                                                                    

 

·        Metoda ecuatiei Laplace

Pentru a obtine ecuatia lui Laplace într-un dielectric omogen (), aflat în câmp electric, se  va înlocui expresia  (forma locala a teoremei potentialului electrostatic) în expresia  (forma locala a legii fluxului electric), în conditiile în care în dielectric nu exista distributie de sarcina electrica libera ():

.

(3.6.11)

Dezvoltând relatia (3.6.11), se obtecuatia lui Laplace:

,

(3.6.12)

ce caracterizeaza în orice punct P un dielectric lipsit de sarcini si strabatut de liniile de câmp electrostatic (fig. 3.6.2)

Fig.3.6.2. Dielectric omogen (), aflat în câmp

Exemplu

Se va determina expresia potentialului electrostatic  în orice punct din dielectricul unui condensator plan (fig. 3.6.3).

Fig.3.6.3. Condensator plan

În acest scop se poate utiliza metoda ecuatiei Laplace, deoarece în dielectric  si dielectricul este omogen ().

Cum câmpul electric se dezvolta numai dupa directia Ox, ecuatia Laplace se simplifica în acest caz, ramânând:

                                   

.

(3.6.13)

Integrând de doua ori suscesiv relatia (3.6.13), se obtine:

            ,

(3.6.14)

constantele si   fiind determinate în urmatoarele conditii:

a.       se alege originea potentialelor pe prima armatura, astfel ca pentru   x=0; rezulta V(x)=V(0)=0 si, de aici, ;

b.      se considera pe armatura din stanga sarcina +q si se aplica legea fluxului electric unei suprafete  închisa care cuprinde aceasta armatura:

.

(3.6.15)

Cum , pentru dielectrici liniari,   devine:

.

(3.6.16)

Se înlocuieste  din expresia :

,  

(3.6.17)

în cea a fluxului electric, obtinând:

(3.6.18)

Cum  si  sunt omoparaleli, se mai poate scrie:

            .

Suprafata armaturii condensatorului fiind A, rezulta:

                                   

.

(3.6.19)

Cum însa:

(rel. 3.6.14),si, înlocuindu-l în (3.6.19), se obtine:                                                         

.

De unde:

.

(3.6.20)

Înlocuind pe  în expresia potentialului (3.6.14) ,rezulta, în final:

                                   

.  

(3.6.21)

           Pentru x=o, V(0)=0,iar pentru x=d:

.    

(3.6.22)

Verificarea se poate face prin calculul capacitatii electrice a condensatorului plan, utilizând expresia potentialului (3.6.22):

.

(3.6.23)

                                         

·        Metoda diferentelor finite

O metoda aproximativa, utilizata în cazul corpurilor cu forme diferite, este metoda diferentelor finite - metoda cu eroare controlabila care foloseste, în locul ecuatiilor cu derivate partiale ale potentialului, ecuatii cu diferente finite. Se presupune în acest caz ca potentialul pe frontiera corpului analizat este dat (cunoscut).

Fie un domeniu bidimensional , caracterizat printr-un câmp laplaceian (fara distributie de sarcina electrica, continând  numai linii de câmp ). Se pune problema determinarii repartitiei potentialului electric în acest domeniu (fig. 3.6.4). Pentru aceasta se va împarti domeniul în mici patrate de latura h si se vor nota nodurile retelei astfel obtinute cu  (unde k = 1...n).

Fiecare punct  are coordonatele () si potentialul .

Fig.3.6.4. Domeniu bidimensional

Se dezvolta în serie Taylor potentialele  din jurul fiecarui nod , unde i = 1....4, dupa care se scriu potentialele punctelor  în functie de potentialul :

;; ;.

(3.6.24)

(3.6.25)

Se aduna aceste ecuatii si se obtine:

(3.6.26)

Fiind vorba de un câmp Laplaceian, potentialul în fiecare punct al domeniului  va satisface ecuatia lui Laplace, care în acest caz are forma:

. 

(3.6.27)

Problema care se pune deci este de a gasi solutia acestei ecuatii care ia pe frontiera  a domeniului  anumite valori (conditiile de frontiera).

Neglijând în rel. (3.6.26) termenii în  si tinând seama de ecuatia (3.6.27), se obtine ecuatia lui Laplace în diferente finite, bidimensionale, de forma:

,

(3.6.28)

care se poate explicita în raport cu :

.

(3.6.29)

Potentialul unui nod al retelei este media aritmetica a potentialelor nodurilor vecine.

Scriind astfel de relatii () pentru toate nodurile si tinând seama de valorile pe frontiera impuse potentialului (respectiv în nodurile din vecinatatea frontierei), se obtine un sistem de n ecuatii cu n necunoscute. Pentru rezolvarea sistemului se poate utiliza metoda lui Cramer sau o metoda de iteratie, folosind calculatorul electronic.



+) Sarcina electronului este considerata ca sarcina elementara (de referinta) si are valoarea:


Document Info


Accesari: 3553
Apreciat:

Comenteaza documentul:

Nu esti inregistrat
Trebuie sa fii utilizator inregistrat pentru a putea comenta


Creaza cont nou

A fost util?

Daca documentul a fost util si crezi ca merita
sa adaugi un link catre el la tine in site

Copiaza codul
in pagina web a site-ului tau.

 


Copyright © Contact (SCRIGROUP Int. 2014 )