Documente online.
Username / Parola inexistente
  Zona de administrare documente. Fisierele tale  
Am uitat parola x Creaza cont nou
  Home Exploreaza
Upload

loading...



















































Polinoame

Matematica












ALTE DOCUMENTE

PROBA ADUNĂRII
ALGEBRA
Paralelogramul
DETERMINAREA CONSTANTEI DE ECHILIBRU A UNUI COMPLEX
FUNCTII
Elemente de trigonometrie
Filiera tehnologica : profil servicii, si resurse naturale si protectia mediului matematica test
Reuniune (un element numai o data)
ALGEBRA LINIARA
AGERIMEA MINTII

Polinoame

XIV.1. Forma algebrică a unui polinom

f C[x] este f = a0Xn + a1Xn-1 + a2Xn-2 + . + an, unde n este gradul, a0 - coeficientul dominant, an - termenul liber.




Functia polinomială asociată lui f C[x] este :C C (a) = f(a) "a C; f(a) fiind valoarea polinomului f în a.

Teorema împărtirii cu rest: "f,g C[x], g 0 există polinoamele u 818j924i nice q,r C[x] astfel încât f = gq + r, grad r < grad g.

Împărtirea unui polinom cu X-a: Restul împărtirii polinomului f C[x], f 0 la X-a este f(a).

Schema lui Horner: ne ajută să aflăm câtul q = b0Xn-1 + b1Xn-2 + . + bn-1 al împărtirii polinomului f = a0Xn + a1Xn-1 + a2Xn-2 + . + an la binomul X-a; precum si restul acestei împărtiri r = f(a);

a0

a1

.

an-1

an

a

b0 = a0

b1 = ab0+a1

.

bn-1 = abn-2+an-1

r=f(a)=abn-1+an

XIV.2. Divizibilitatea polinoamelor

Definitia XIV.2.1. Fie f,g C[x], spunem că g divide pe f si notăm g f dacă q C[x] astfel încât f=gq.

Proprietăti:

a f, "a C*, "f C[x];

g f si f 0 r = 0;

g f si f 0 grad f grad g;

a C* af f;

f f (refelexivitate);

f g si g h f h (tranzitivitate);

f g si g f a C* cu f = ag (f,g sunt asociate în divizibilitate).

Definitia XIV.2.2. Un polinom d se numeste cel mai mare divizor comun (c.m.m.d.c.) al polinoamelor f si g dacă: 1) d f si d g.



2) d' f si d' g d' d si notăm d=(f,g)

Definitia XIV.2.3. Dacă d=1 atunci f si g se numesc prime între ele.

Definitia XIV.2.4. Un polinom m se numeste cel mai mic multiplu comun (c.m.m.m.c.) al polinoamelor f si g dacă: 1) f m si g m.

2) f m' si g m' m m'

Teoremă. Dacă d=(f,g) atunci m =

XIV.3. Rădăcinile polinoamelor

Definitia XIV.3.1. Numărul a C se numeste rădăcină a polinomului f dacă si numai dacă (a) = 0.

Teorema lui Bezout: Numărul a C este rădăcină a polinomului f 0 (X-a) f.

Definitia XIV.3.2. Numărul a se numeste rădăcină multiplă de ordinul p a polinomului f 0 dacă si numai dacă (X-a) f iar (X-a)p+1 nu-l divide pe f.

Teoremă: Dacă f C[x] este un polinom de gradul n si x1,x2,x3,.,xn sunt rădăcinile lui cu ordinele de multiplicitate m1,m2,m3,.,mn atunci unde a0 este coeficientul dominant al lui f, iar m1 + m2 + . + mn = grad f.

XIV.4. Ecuatii algebrice

Definitia XIV.4.1. O ecuatie de forma f(x) = 0 unde f 0 este un polinom, se numeste ecuatie algebrică.

Teorema lui Abel-Ruffini: Ecuatiile algebrice de grad mai mare decât patru nu se pot rezolva prin radicali.

Teorema lui D'Alambert-Gauss: Orice ecuatie algebrică de grad mai mare sau egal cu unu, are cel putin o rădăcină (complexă).

Formulele lui Viete: Dacă numerele x1,x2,.,xn sunt rădăcinile polinomului f C[x], f = a0Xn + a1Xn-1 + .+ an, a0 0 atunci:

XIV.5. Polinoame cu coeficienti din R, Q, Z

Teoremă: Dacă f R[x] admite pe a = a + ib, b 0 ca rădăcină atunci el admite ca rădăcină si pe a = a - ib, iar a si a au acelasi ordin, de mutiplicitate.

Teoremă: Dacă un polinom f Q[x] admite pe a = a + b (a,b Q, b 0, d R\Q) ca rădăcină, atunci el admite si pe = a - b, iar a si a au acelasi ordin, de mutiplicitate.

Teoremă: Dacă un polinom f Z[x], grad f 1, admite o rădăcină a = Q, (p,q) = 1 atunci p an si q a0.

În particular dacă f Z[x] are rădăcina a=p Z atunci p an.



loading...











Document Info


Accesari: 10038
Apreciat:

Comenteaza documentul:

Nu esti inregistrat
Trebuie sa fii utilizator inregistrat pentru a putea comenta


Creaza cont nou

A fost util?

Daca documentul a fost util si crezi ca merita
sa adaugi un link catre el la tine in site

Copiaza codul
in pagina web a site-ului tau.




Coduri - Postale, caen, cor

Politica de confidentialitate

Copyright © Contact (SCRIGROUP Int. 2020 )