Documente online.
Username / Parola inexistente
  Zona de administrare documente. Fisierele tale  
Am uitat parola x Creaza cont nou
  Home Exploreaza
Upload



















































Repartitii discrete

Matematica












ALTE DOCUMENTE

REZOLVAREA SISTEMELOR DE ECUATII LINIARE
Ecuatii exponentiale si inecuatii exponentiale
Evaluarea nr.3 (matematica)
Dreptunghiul
TEST MATEMATICA CLASA a IV-a
Prisma
Teste neparametrice de comparare
Formule matematica
Importanta repartitiei normale

Repartitii discrete

6.5.1.1 Repartitia discreta uniforma

        Este una dintre cele mai simple repartitii. Probabilitatea totala, egala cu 1 sau 100%, se împarte în mod egal la mai multe posibilitati care pot apare în experimentul în care aceasta densitate intervine. De exemplu, prin aruncarea unui zar, se pot obtine cele sase valori corespunzatoare celor sase fete ale zarului, fiecare având probabilitatea 1/6.



În acest caz, functia de repartitie este variabila aleatoare definita de , , adica r(1)=1/6, r(2)=1/6, r(3)=1/6, r(4)=1/6, r(5)=1/6, r(6)=1/6. Graficul acestei repartitii simple este dat de figura 6.20:

Figura 6.20 Repartitia discreta uniforma în cazul aruncarii unui zar

6.5.1.2. Repartitia binomiala

        Este una dintre cele mai importante repartitii deoarece are aplicatii în statisticile epidemiologice si în toate statisticile unde intervin proportii. Daca într-o populatie, proportia indivizilor afectati de o maladie, (sau expusi la un factor de risc sau orice alta astfel de dichotomie), este p iar a celor neexpusi este q=1-p, atunci daca extragem aleator din populatie un numar de n indivizi, probabilitatea ca dintre ei, exact k sa fie afectati, este:

Figura 6.21 Repartitia binomiala pentru n=5 si pentru valori ale lui p de la 0,1 la 0,9, din 0,1 în 0,1. Se obeserva ca este cu atât mai asimetrica, cu cât valoarea lui p este mai mica sau mai mare. Pentru p=0,5, repartitia este perfect simetrica. Fiind o distributie discreta, repartitia nu este o curba ci poate fi reprezentata bine printr-o histograma.

Figura 6.22 Repartitia binomiala pentru n=15 si pentru valori ale lui p de la 0,1 la 0,9, din 0,1 în 0,1. Se obeserva ca este cu atât mai asimetrica, cu cât valoarea lui p este mai mica sau mai mare. Pentru p=0,5, repartitia este perfect simetrica. De asemenea, pentru p=0,4 si p=0,6, repartitia este foarte simetrica. Fiind o distributie discreta, repartitia nu este o curba ci poate fi reprezentata bine printr-o histograma.

Figura 6.23 Repartitia binomiala pentru n=50 si pentru valori ale lui p de la 0,1 la 0,9, din 0,1 în 0,1. Se obeserva ca este cu atât mai asimetrica, cu cât valoarea lui p este mai mica sau mai mare. Pentru p=0,5, repartitia este perfect simetrica. De asemenea, pentru p=0,4, p=0,6, p=0,3, p=0,7, repartitia este foarte simetrica. Practic, reparrtitia este simetrica pentru toate valorile lui p, exceptând p=0,1 si p=0,9. Fiind o distributie discreta, repartitia nu este o curba ci poate fi reprezentata bine printr-o histograma.

Figura 6.24 Repartitia binomiala pentru n=250 si pentru valori ale lui p de la 0,1 la 0,9, din 0,1 în 0,1. Se obeserva ca este simetrica pentru toate valorile lui p. Fiind o distributie discreta, repartitia nu este o curba ci poate fi reprezentata bine printr-o histograma.













Document Info


Accesari: 3932
Apreciat:

Comenteaza documentul:

Nu esti inregistrat
Trebuie sa fii utilizator inregistrat pentru a putea comenta


Creaza cont nou

A fost util?

Daca documentul a fost util si crezi ca merita
sa adaugi un link catre el la tine in site

Copiaza codul
in pagina web a site-ului tau.




Coduri - Postale, caen, cor

Politica de confidentialitate

Copyright © Contact (SCRIGROUP Int. 2019 )