SERII NUMERICE IN R
![]()
|
Obs 1 (forma generala) : |
Fie sirul
, un sir de numere
reale. Atunci definim expresia:
(F1) S =
=
=![]()
sau
(F2) S = ![]()
sau
(F3) S =
, unde
,
iar S se numeste serie sau suma infinita .
|
Obs 2 |
Pentru seria S de
forma (F1) - (F3), termenul
se numeste termenul
general al seriei S si avem
ca:
( termenul general al
seriei S )
|
Obs 3 |
Pentru seria S de forma (F1) - (F3),
definim sirul
care se numeste sirul sumelor partiale al seriei S, unde:
(1) pentru S
=
si ![]()
(2) pentru S =
si ![]()
(3) pentru S
=
si
, unde
.
Termenul
reprezinta termenul general al sirului sumelor partiale
si este o
suma finita de termeni, unde:
( termenul general al sirului sumelor partiale
)
|
Obs 4 |
Natura sau tipul unei serii numerice S
2 cazuri:
|
C |
(C1) seria S
este convergenta
S
|
D |
(C2) seria S
este divergenta
S
|
Obs 5 |
Astfel, se impun 2 tipuri de aplicatii ( probleme ):
Tip I : Sa se studieze natura seriei numerice S date si in caz de convergenta , sa se determine
suma seriei S date;
Tip II : Sa se studieze natura seriei numerice S date, folosind criteriile de convergenta uzuale
( indicate in enunt sau nu ).
|
Obs 6 |
Pentru a rezolva Tip I si Tip II vom utiliza:
a) stabilirea C / D cu definitia ( pentru Tip I );
b) S.R. = seriile numerice remarcabile ( pentru Tip II );
c) CRT. = criteriile de convergenta uzuale ( pentru Tip II ).
|
Obs 7 |
Tip I (de probleme - etape de rezolvare ).
Ip: fie data seria numerica S
C: a) sa se determine natura seriei numerice date S ( adica C / D );
b) sa se determine suma seriei numerice date S ( doar in cazul in care seria S este C ) .
D: Rezolvare ( etape ):
Pas 1 :
determinam t.g.S
determinam ![]()
Pas 2 : aplicam CRT.1
Pas 3 : ( daca CRT.1
)
▪ formam sirul sumelor
partiale
;
▪ determinam t.g.s.
determinam
;
▪
calculam
Pas 4 : ( raspuns cerinte problema Tip I )
calculam
urmatoarele 2 cazuri:
▪ daca
( limita finita )
1) S = C ( adica seria numerica data S este convergenta )
2)
suma S = ![]()
▪ daca
=
sau nu
S = D (adica seria data
S este divergenta )
|
Obs 8 |
Tip II ( de probleme - etape de rezolvare ).
Ip: fie data seria numerica S
C: sa se determine natura seriei numerice date S ( adica C / D );
D: Rezolvare ( etape ):
Pas 1 :
determinam t.g.S
determinam ![]()
Pas 2 : aplicam CRT.1
Pas 3 : ( daca CRT.1
)
Aplicam S.R. ( seriile numerice remarcabile ) sau CRT.2-8 ( criteriile de convergenta uzuale )
pentru a determina natura seriei numerice date S .
Pas 4 : ( raspuns cerinta problema Tip II )
Conform rezultatului de la Pas3 stabilim in final daca seria numerica data S este C / D.
|
Obs 9 |
SERII REMARCABILE
S.R.
A. SERIA
GEOMETRICA
Sg
|
Nr. Crt. |
F.G. - forma generala |
Natura seriei Sg C / D |
Suma serie Sg |
|
1. |
Sg = unde |
C |
Sg = |
|
2. |
Sg = unde |
C |
Sg = |
|
3. |
Sg = unde |
D |
Sg = |
B. SERIA ARMONICA GENERALIZATA ( RIEMANN )
Sa
|
Nr. Crt. |
F.G. - forma generala |
Natura seriei Sa C / D |
|
|
1. |
Sa = unde |
C |
|
|
2. |
Sa = unde |
D |
|
|
Obs 10 |
|
||
Criteriile de convergenta se aplica astfel:
|
Obs 11 |
CRITERII DE CONVERGENTA
CRT.1 ( Criteriul necesar dar nu suficient de convergenta )
▪ fie seria numerica:
S
= ![]()
▪ calculam limita:
![]()
▪ atunci:
1) daca
? - studiem natura seriei numerice date S ( C / D ) cu
alte CRT. de convergenta
daca
(
) ,
sau
nu
seria numerica data S este D
CRT.2 ( Criteriul comparatiei : I , II , III )
I.
![]()
▪ fie seriile
numerice:
A = ![]()
B =
astfel incat
, ![]()
,
>0 ,
▪ atunci:
1) daca seria numerica B este
C
seria A este C
2) daca seria numerica A este
D
seria B este D
II. ( criteriul rapoartelor inegale al lui Kummer )
![]()
▪ fie seriile
numerice:
A = ![]()
B =
astfel incat
, ![]()
,
>0 ,
▪ atunci:
1) daca seria numerica B este
C
seria A este C
2) daca seria numerica A este
D
seria B este D
III. ( criteriul raportului la limita )
▪ fie seriile
numerice:
A = ![]()
B =
calculam
, ![]()
,
>0 ,
▪ atunci:
1) daca
seriile numerice A si B au aceeasi natura ( ambele
C sau ambele D )
2)
daca
si seria
numerica B este C
seria numerica A este
C
3)
daca
si seria numerica B este D
seria numerica A este D
Observatii:
O1. frecvent utilizat in calcule ( aplicatii serii numerice ) este CRT.2 ( III )
O2. in rezolvari se vor utiliza seriile remarcabile astfel:
▪ pentru C
seriile
remarcabile convergente :
Sg cu ratia
sau
Sa cu
▪
pentru D
seriile
remarcabile divergente :
Sg cu ratia ![]()
sau
Sa cu
CRT.3 ( Criteriul condensarii al lui Cauchy )
▪ fie seria numerica:
A = ![]()
formam
seria numerica condensata A (
):
>0 ,
,
A (
) = ![]()
( in seria numerica data A , facem :
)
▪ atunci:
1) daca seria numerica condensata A (
) este C
seria numerica A este
C
2) daca seria numerica condensata A (
) este D
seria numerica A este
D
CRT.4 ( Criteriul radacinii al lui Cauchy )
▪ fie seria numerica:
A = ![]()
calculam limita :
>0 ,
▪ atunci:
1) daca
seria numerica A este
C
daca
seria numerica A este
D
daca
? ( aplicam un alt criteriu pentru a stabili
natura seriei numerice A )
CRT.5 ( Criteriul raportului al lui D'Alembert )
▪ fie seria numerica:
A = ![]()
calculam limita :
>0 ,
![]()
▪ atunci:
1) daca
seria numerica A este
C
daca
seria numerica A este
D
daca
? ( aplicam un alt criteriu pentru a stabili
natura seriei numerice A )
CRT.5 ( Criteriul lui Raabe - Duhamel )
▪ fie seria numerica:
A = ![]()
calculam limita :
>0 ,
sau
▪ atunci:
1) daca
seria numerica A este
D
daca
seria numerica A este
C
daca
? ( aplicam un alt criteriu pentru a stabili
natura seriei numerice A )
CRT.7 ( Criteriul logaritmic )
▪ fie seria numerica:
A = ![]()
calculam limita :
>0 ,
![]()
▪ atunci:
1) daca
seria numerica A este
D
daca
seria numerica A este
C
daca
? ( aplicam un alt criteriu pentru a stabili
natura seriei numerice A )
Observatie:
▪ pentru criteriile CRT. 4 , 5 , 6 , 7
avem urmatoarea
corespondenta :
CRT.4 ( radical ) CRT.5 ( raport )
![]()
CRT.6 ( R - D ) CRT.7 ( logaritm )
CRT.8 ( Criteriul integral )
▪ fie seria numerica:
A = ![]()
determinam
functia
astfel:
>0 ,
, unde
▪ calculam :
|
![]()
▪ atunci:
1) daca
( limita finita )
seria numerica A este
C
2) daca
sau nu
seria numerica A este
D
|
Obs 12 |
SERII NUMERICE ALTERNATE
▪ forma generala:
(F1) S =
,
, ![]()
sau
(F2) S =
,
>0 , ![]()
CRT.9 ( Criteriul de convergenta pentru serii alternate - criteriul lui Leibnitz )
▪ fie seria numerica:
S =
,
>0 ,
▪ atunci daca sirul:
este
si
seria numerica S este C
Exemplu Seria armonica alternata
S =
, unde S este C si are suma S = ![]()
|